BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

560 related articles for article (PubMed ID: 18006452)

  • 1. Bidirectional regulation of Ca2+ sparks by mitochondria-derived reactive oxygen species in cardiac myocytes.
    Yan Y; Liu J; Wei C; Li K; Xie W; Wang Y; Cheng H
    Cardiovasc Res; 2008 Jan; 77(2):432-41. PubMed ID: 18006452
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dystrophic cardiomyopathy: amplification of cellular damage by Ca2+ signalling and reactive oxygen species-generating pathways.
    Jung C; Martins AS; Niggli E; Shirokova N
    Cardiovasc Res; 2008 Mar; 77(4):766-73. PubMed ID: 18056762
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Redox regulation of cardiac calcium channels and transporters.
    Zima AV; Blatter LA
    Cardiovasc Res; 2006 Jul; 71(2):310-21. PubMed ID: 16581043
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shear fluid-induced Ca2+ release and the role of mitochondria in rat cardiac myocytes.
    Belmonte S; Morad M
    Ann N Y Acad Sci; 2008 Mar; 1123():58-63. PubMed ID: 18375577
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Local control of mitochondrial membrane potential, permeability transition pore and reactive oxygen species by calcium and calmodulin in rat ventricular myocytes.
    Odagiri K; Katoh H; Kawashima H; Tanaka T; Ohtani H; Saotome M; Urushida T; Satoh H; Hayashi H
    J Mol Cell Cardiol; 2009 Jun; 46(6):989-97. PubMed ID: 19318235
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of cytosolic NADH/NAD(+) levels on sarcoplasmic reticulum Ca(2+) release in permeabilized rat ventricular myocytes.
    Zima AV; Copello JA; Blatter LA
    J Physiol; 2004 Mar; 555(Pt 3):727-41. PubMed ID: 14724208
    [TBL] [Abstract][Full Text] [Related]  

  • 7. OxLDL enhances L-type Ca2+ currents via lysophosphatidylcholine-induced mitochondrial reactive oxygen species (ROS) production.
    Fearon IM
    Cardiovasc Res; 2006 Mar; 69(4):855-64. PubMed ID: 16412401
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ATP-dependent effects of halothane on SR Ca2+ regulation in permeabilized atrial myocytes.
    Yang Z; Harrison SM; Steele DS
    Cardiovasc Res; 2005 Jan; 65(1):167-76. PubMed ID: 15621044
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Redox modification of ryanodine receptors by mitochondria-derived reactive oxygen species contributes to aberrant Ca2+ handling in ageing rabbit hearts.
    Cooper LL; Li W; Lu Y; Centracchio J; Terentyeva R; Koren G; Terentyev D
    J Physiol; 2013 Dec; 591(23):5895-911. PubMed ID: 24042501
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cellular mechanism underlying burn serum-generated bidirectional regulation of excitation-contraction coupling in isolated rat cardiomyocytes.
    Luo X; Deng J; Liu N; Zhang C; Huang Q; Liu J
    Shock; 2011 Apr; 35(4):388-95. PubMed ID: 21063240
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondrial redox state and Ca2+ sparks in permeabilized mammalian skeletal muscle.
    Isaeva EV; Shkryl VM; Shirokova N
    J Physiol; 2005 Jun; 565(Pt 3):855-72. PubMed ID: 15845582
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shear stress enhances Ca
    Kim JC; Wang J; Son MJ; Woo SH
    Biochim Biophys Acta Mol Cell Res; 2017 Jun; 1864(6):1121-1131. PubMed ID: 28213332
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activation of CaMKII as a key regulator of reactive oxygen species production in diabetic rat heart.
    Nishio S; Teshima Y; Takahashi N; Thuc LC; Saito S; Fukui A; Kume O; Fukunaga N; Hara M; Nakagawa M; Saikawa T
    J Mol Cell Cardiol; 2012 May; 52(5):1103-11. PubMed ID: 22394624
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polymorphism of Ca2+ sparks evoked from in-focus Ca2+ release units in cardiac myocytes.
    Shen JX; Wang S; Song LS; Han T; Cheng H
    Biophys J; 2004 Jan; 86(1 Pt 1):182-90. PubMed ID: 14695261
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic modulation of Ca2+ sparks by mitochondrial oscillations in isolated guinea pig cardiomyocytes under oxidative stress.
    Zhou L; Aon MA; Liu T; O'Rourke B
    J Mol Cell Cardiol; 2011 Nov; 51(5):632-9. PubMed ID: 21645518
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transient exposure to hydrogen peroxide causes an increase in mitochondria-derived superoxide as a result of sustained alteration in L-type Ca2+ channel function in the absence of apoptosis in ventricular myocytes.
    Viola HM; Arthur PG; Hool LC
    Circ Res; 2007 Apr; 100(7):1036-44. PubMed ID: 17347474
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Opening of mitochondrial permeability transition pore induces hypercontracture in Ca2+ overloaded cardiac myocytes.
    Ruiz-Meana M; Abellán A; Miró-Casas E; Garcia-Dorado D
    Basic Res Cardiol; 2007 Nov; 102(6):542-52. PubMed ID: 17891523
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increased Ca(2+) sparks and sarcoplasmic reticulum Ca(2+) stores potentially determine the spontaneous activity of pulmonary vein cardiomyocytes.
    Chang SH; Chen YC; Chiang SJ; Higa S; Cheng CC; Chen YJ; Chen SA
    Life Sci; 2008 Aug; 83(7-8):284-92. PubMed ID: 18639558
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modification of smooth muscle Ca2+-sparks by tetracaine: evidence for sequential RyR activation.
    Curtis TM; Tumelty J; Stewart MT; Arora AR; Lai FA; McGahon MK; Scholfield CN; McGeown JG
    Cell Calcium; 2008 Feb; 43(2):142-54. PubMed ID: 17574671
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Serofendic acid, a novel substance extracted from fetal calf serum, protects against oxidative stress in neonatal rat cardiac myocytes.
    Takeda T; Akao M; Matsumoto-Ida M; Kato M; Takenaka H; Kihara Y; Kume T; Akaike A; Kita T
    J Am Coll Cardiol; 2006 May; 47(9):1882-90. PubMed ID: 16682316
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.