These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

374 related articles for article (PubMed ID: 18006566)

  • 1. Difficult extubation in low birthweight infants.
    Greenough A; Prendergast M
    Arch Dis Child Fetal Neonatal Ed; 2008 May; 93(3):F242-5. PubMed ID: 18006566
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Weaning from mechanical ventilation.
    Gizzi C; Moretti C; Agostino R
    J Matern Fetal Neonatal Med; 2011 Oct; 24 Suppl 1():61-3. PubMed ID: 21942595
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Factors related to extubation failure in premature infants less than 32 weeks of gestation].
    Deguines C; Bach V; Tourneux P
    Arch Pediatr; 2009 Sep; 16(9):1219-24. PubMed ID: 19577908
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predictors of successful extubation of preterm low-birth-weight infants with respiratory distress syndrome.
    Szymankiewicz M; Vidyasagar D; Gadzinowski J
    Pediatr Crit Care Med; 2005 Jan; 6(1):44-9. PubMed ID: 15636658
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Feasibility of weaning and direct extubation from open lung high-frequency ventilation in preterm infants.
    van Velzen A; De Jaegere A; van der Lee J; van Kaam A
    Pediatr Crit Care Med; 2009 Jan; 10(1):71-5. PubMed ID: 19057441
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Weaning infants from mechanical ventilation.
    Sant'Anna GM; Keszler M
    Clin Perinatol; 2012 Sep; 39(3):543-62. PubMed ID: 22954268
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bubble continuous positive airway pressure, a potentially better practice, reduces the use of mechanical ventilation among very low birth weight infants with respiratory distress syndrome.
    Nowadzky T; Pantoja A; Britton JR
    Pediatrics; 2009 Jun; 123(6):1534-40. PubMed ID: 19482765
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A randomized trial of delayed extubation for the reduction of reintubation in extremely preterm infants.
    Danan C; Durrmeyer X; Brochard L; Decobert F; Benani M; Dassieu G
    Pediatr Pulmonol; 2008 Feb; 43(2):117-24. PubMed ID: 18092355
    [TBL] [Abstract][Full Text] [Related]  

  • 9. To tube or not to tube babies with respiratory distress syndrome.
    Sekar KC; Corff KE
    J Perinatol; 2009 May; 29 Suppl 2():S68-72. PubMed ID: 19399013
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Early extubation attempts reduce length of stay in extremely preterm infants even if re-intubation is necessary.
    Robbins M; Trittmann J; Martin E; Reber KM; Nelin L; Shepherd E
    J Neonatal Perinatal Med; 2015; 8(2):91-7. PubMed ID: 26410431
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lung volume measurements immediately after extubation by prediction of "extubation failure" in premature infants.
    Dimitriou G; Greenough A; Laubscher B
    Pediatr Pulmonol; 1996 Apr; 21(4):250-4. PubMed ID: 9121856
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A trial of spontaneous breathing to determine the readiness for extubation in very low birth weight infants: a prospective evaluation.
    Kamlin CO; Davis PG; Argus B; Mills B; Morley CJ
    Arch Dis Child Fetal Neonatal Ed; 2008 Jul; 93(4):F305-6. PubMed ID: 18192327
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A randomized trial of non-synchronized Nasopharyngeal Intermittent Mandatory Ventilation (nsNIMV) vs. Nasal Continuous Positive Airway Pressure (NCPAP) in the prevention of extubation failure in pre-term < 1,500 grams.
    Khorana M; Paradeevisut H; Sangtawesin V; Kanjanapatanakul W; Chotigeat U; Ayutthaya JK
    J Med Assoc Thai; 2008 Oct; 91 Suppl 3():S136-42. PubMed ID: 19253509
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting successful extubation of very low birthweight infants.
    Kamlin CO; Davis PG; Morley CJ
    Arch Dis Child Fetal Neonatal Ed; 2006 May; 91(3):F180-3. PubMed ID: 16410255
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-flow nasal cannula and extubation success in the premature infant: a comparison of two modalities.
    Miller SM; Dowd SA
    J Perinatol; 2010 Dec; 30(12):805-8. PubMed ID: 20237485
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Continuous positive airway pressure: early, late, or stay with synchronized intermittent mandatory ventilation?
    Bancalari E; del Moral T
    J Perinatol; 2006 May; 26 Suppl 1():S33-7; discussion S43-5. PubMed ID: 16625223
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Volume targeted ventilation (volume guarantee) in the weaning phase of premature newborn infants.
    Scopesi F; Calevo MG; Rolfe P; Arioni C; Traggiai C; Risso FM; Serra G
    Pediatr Pulmonol; 2007 Oct; 42(10):864-70. PubMed ID: 17726708
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low-dose dexamethasone facilitates extubation among chronically ventilator-dependent infants: a multicenter, international, randomized, controlled trial.
    Doyle LW; Davis PG; Morley CJ; McPhee A; Carlin JB;
    Pediatrics; 2006 Jan; 117(1):75-83. PubMed ID: 16396863
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A randomised controlled trial of two methods of delivering nasal continuous positive airway pressure after extubation to infants weighing less than 1000 g: binasal (Hudson) versus single nasal prongs.
    Davis P; Davies M; Faber B
    Arch Dis Child Fetal Neonatal Ed; 2001 Sep; 85(2):F82-5. PubMed ID: 11517198
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimal strategies for newborn ventilation--a synthesis of the evidence.
    Greenough A; Sharma A
    Early Hum Dev; 2005 Dec; 81(12):957-64. PubMed ID: 16278057
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.