These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 18006656)

  • 1. Measurement of bond vector orientations in invisible excited states of proteins.
    Vallurupalli P; Hansen DF; Stollar E; Meirovitch E; Kay LE
    Proc Natl Acad Sci U S A; 2007 Nov; 104(47):18473-7. PubMed ID: 18006656
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing invisible, low-populated States of protein molecules by relaxation dispersion NMR spectroscopy: an application to protein folding.
    Korzhnev DM; Kay LE
    Acc Chem Res; 2008 Mar; 41(3):442-51. PubMed ID: 18275162
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structures of invisible, excited protein states by relaxation dispersion NMR spectroscopy.
    Vallurupalli P; Hansen DF; Kay LE
    Proc Natl Acad Sci U S A; 2008 Aug; 105(33):11766-71. PubMed ID: 18701719
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An analysis of the effects of 1HN-(1)HN dipolar couplings on the measurement of amide bond vector orientations in invisible protein states by relaxation dispersion NMR.
    van Ingen H; Korzhnev DM; Kay LE
    J Phys Chem B; 2009 Jul; 113(29):9968-77. PubMed ID: 19569643
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measurement of methyl group motional parameters of invisible, excited protein states by NMR spectroscopy.
    Hansen DF; Vallurupalli P; Kay LE
    J Am Chem Soc; 2009 Sep; 131(35):12745-54. PubMed ID: 19685870
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measurement of methyl axis orientations in invisible, excited states of proteins by relaxation dispersion NMR spectroscopy.
    Baldwin AJ; Hansen DF; Vallurupalli P; Kay LE
    J Am Chem Soc; 2009 Aug; 131(33):11939-48. PubMed ID: 19627152
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantifying two-bond 1HN-13CO and one-bond 1H(alpha)-13C(alpha) dipolar couplings of invisible protein states by spin-state selective relaxation dispersion NMR spectroscopy.
    Hansen DF; Vallurupalli P; Kay LE
    J Am Chem Soc; 2008 Jul; 130(26):8397-405. PubMed ID: 18528998
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NMR paves the way for atomic level descriptions of sparsely populated, transiently formed biomolecular conformers.
    Sekhar A; Kay LE
    Proc Natl Acad Sci U S A; 2013 Aug; 110(32):12867-74. PubMed ID: 23868852
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural characterization of unfolded states of apomyoglobin using residual dipolar couplings.
    Mohana-Borges R; Goto NK; Kroon GJ; Dyson HJ; Wright PE
    J Mol Biol; 2004 Jul; 340(5):1131-42. PubMed ID: 15236972
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accurate measurement of alpha proton chemical shifts of excited protein states by relaxation dispersion NMR spectroscopy.
    Lundström P; Hansen DF; Vallurupalli P; Kay LE
    J Am Chem Soc; 2009 Feb; 131(5):1915-26. PubMed ID: 19152327
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Abp1p and Fyn SH3 domains fold through similar low-populated intermediate states.
    Korzhnev DM; Neudecker P; Zarrine-Afsar A; Davidson AR; Kay LE
    Biochemistry; 2006 Aug; 45(34):10175-83. PubMed ID: 16922492
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isotope labeling methods for studies of excited protein states by relaxation dispersion NMR spectroscopy.
    Lundström P; Vallurupalli P; Hansen DF; Kay LE
    Nat Protoc; 2009; 4(11):1641-8. PubMed ID: 19876024
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Studying "invisible" excited protein states in slow exchange with a major state conformation.
    Vallurupalli P; Bouvignies G; Kay LE
    J Am Chem Soc; 2012 May; 134(19):8148-61. PubMed ID: 22554188
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measurement of signs of chemical shift differences between ground and excited protein states: a comparison between H(S/M)QC and R1rho methods.
    Auer R; Hansen DF; Neudecker P; Korzhnev DM; Muhandiram DR; Konrat R; Kay LE
    J Biomol NMR; 2010 Mar; 46(3):205-16. PubMed ID: 20033258
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cross-validation of the structure of a transiently formed and low populated FF domain folding intermediate determined by relaxation dispersion NMR and CS-Rosetta.
    Barette J; Velyvis A; Religa TL; Korzhnev DM; Kay LE
    J Phys Chem B; 2012 Jun; 116(23):6637-44. PubMed ID: 22148426
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measuring Diffusion Constants of Invisible Protein Conformers by Triple-Quantum
    Yuwen T; Sekhar A; Baldwin AJ; Vallurupalli P; Kay LE
    Angew Chem Int Ed Engl; 2018 Dec; 57(51):16777-16780. PubMed ID: 30370966
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relaxation dispersion NMR spectroscopy as a tool for detailed studies of protein folding.
    Neudecker P; Lundström P; Kay LE
    Biophys J; 2009 Mar; 96(6):2045-54. PubMed ID: 19289032
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resolving biomolecular motion and interactions by R
    Walinda E; Morimoto D; Sugase K
    Methods; 2018 Sep; 148():28-38. PubMed ID: 29704666
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improvement of hydrogen bond geometry in protein NMR structures by residual dipolar couplings--an assessment of the interrelation of NMR restraints.
    Jensen PR; Axelsen JB; Lerche MH; Poulsen FM
    J Biomol NMR; 2004 Jan; 28(1):31-41. PubMed ID: 14739637
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonnative interactions in the FF domain folding pathway from an atomic resolution structure of a sparsely populated intermediate: an NMR relaxation dispersion study.
    Korzhnev DM; Vernon RM; Religa TL; Hansen AL; Baker D; Fersht AR; Kay LE
    J Am Chem Soc; 2011 Jul; 133(28):10974-82. PubMed ID: 21639149
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.