These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
349 related articles for article (PubMed ID: 18006663)
1. Acoustically detectable cellular-level lung injury induced by fluid mechanical stresses in microfluidic airway systems. Huh D; Fujioka H; Tung YC; Futai N; Paine R; Grotberg JB; Takayama S Proc Natl Acad Sci U S A; 2007 Nov; 104(48):18886-91. PubMed ID: 18006663 [TBL] [Abstract][Full Text] [Related]
2. Epithelium damage and protection during reopening of occluded airways in a physiologic microfluidic pulmonary airway model. Tavana H; Zamankhan P; Christensen PJ; Grotberg JB; Takayama S Biomed Microdevices; 2011 Aug; 13(4):731-42. PubMed ID: 21487664 [TBL] [Abstract][Full Text] [Related]
3. Liquid plug propagation in computer-controlled microfluidic airway-on-a-chip with semi-circular microchannels. Viola HL; Vasani V; Washington K; Lee JH; Selva C; Li A; Llorente CJ; Murayama Y; Grotberg JB; RomanĂ² F; Takayama S Lab Chip; 2024 Jan; 24(2):197-209. PubMed ID: 38093669 [TBL] [Abstract][Full Text] [Related]
4. Dynamics of liquid plugs of buffer and surfactant solutions in a micro-engineered pulmonary airway model. Tavana H; Kuo CH; Lee QY; Mosadegh B; Huh D; Christensen PJ; Grotberg JB; Takayama S Langmuir; 2010 Mar; 26(5):3744-52. PubMed ID: 20017471 [TBL] [Abstract][Full Text] [Related]
5. Biomechanics of liquid-epithelium interactions in pulmonary airways. Ghadiali SN; Gaver DP Respir Physiol Neurobiol; 2008 Nov; 163(1-3):232-43. PubMed ID: 18511356 [TBL] [Abstract][Full Text] [Related]
6. Liquid plug propagation in computer-controlled microfluidic airway-on-a-chip with semi-circular microchannels. Viola HL; Vasani V; Washington K; Lee JH; Selva C; Li A; Llorente CJ; Murayama Y; Grotberg JB; RomanĂ² F; Takayama S bioRxiv; 2023 May; ():. PubMed ID: 37292706 [TBL] [Abstract][Full Text] [Related]
7. A bioinspired microfluidic model of liquid plug-induced mechanical airway injury. Song JW; Paek J; Park KT; Seo J; Huh D Biomicrofluidics; 2018 Jul; 12(4):042211. PubMed ID: 29887935 [TBL] [Abstract][Full Text] [Related]
8. Human Lung Small Airway-on-a-Chip Protocol. Benam KH; Mazur M; Choe Y; Ferrante TC; Novak R; Ingber DE Methods Mol Biol; 2017; 1612():345-365. PubMed ID: 28634955 [TBL] [Abstract][Full Text] [Related]
9. Influence of airway diameter and cell confluence on epithelial cell injury in an in vitro model of airway reopening. Yalcin HC; Perry SF; Ghadiali SN J Appl Physiol (1985); 2007 Nov; 103(5):1796-807. PubMed ID: 17673567 [TBL] [Abstract][Full Text] [Related]
10. A microfluidic model to study fluid dynamics of mucus plug rupture in small lung airways. Hu Y; Bian S; Grotberg J; Filoche M; White J; Takayama S; Grotberg JB Biomicrofluidics; 2015 Jul; 9(4):044119. PubMed ID: 26392827 [TBL] [Abstract][Full Text] [Related]
11. Engineering an artificial alveolar-capillary membrane: a novel continuously perfused model within microchannels. Nalayanda DD; Wang Q; Fulton WB; Wang TH; Abdullah F J Pediatr Surg; 2010 Jan; 45(1):45-51. PubMed ID: 20105578 [TBL] [Abstract][Full Text] [Related]
12. Mechanisms of surface-tension-induced epithelial cell damage in a model of pulmonary airway reopening. Bilek AM; Dee KC; Gaver DP J Appl Physiol (1985); 2003 Feb; 94(2):770-83. PubMed ID: 12433851 [TBL] [Abstract][Full Text] [Related]
13. Image-based finite element modeling of alveolar epithelial cell injury during airway reopening. Dailey HL; Ricles LM; Yalcin HC; Ghadiali SN J Appl Physiol (1985); 2009 Jan; 106(1):221-32. PubMed ID: 19008489 [TBL] [Abstract][Full Text] [Related]
14. Effects of surfactant on propagation and rupture of a liquid plug in a tube. Muradoglu M; RomanĂ² F; Fujioka H; Grotberg JB J Fluid Mech; 2019 Aug; 872():407-437. PubMed ID: 31844335 [TBL] [Abstract][Full Text] [Related]
16. 3. Epithelial injury. Mechanisms and cell biology of airway epithelial injury. Boucher RC; Van Scott MR; Willumsen N; Stutts MJ Am Rev Respir Dis; 1988 Dec; 138(6 Pt 2):S41-4. PubMed ID: 3202521 [TBL] [Abstract][Full Text] [Related]
17. Pressure gradient, not exposure duration, determines the extent of epithelial cell damage in a model of pulmonary airway reopening. Kay SS; Bilek AM; Dee KC; Gaver DP J Appl Physiol (1985); 2004 Jul; 97(1):269-76. PubMed ID: 15004001 [TBL] [Abstract][Full Text] [Related]
18. The air-liquid flow in a microfluidic airway tree. Song Y; Baudoin M; Manneville P; Baroud CN Med Eng Phys; 2011 Sep; 33(7):849-56. PubMed ID: 21074477 [TBL] [Abstract][Full Text] [Related]
19. Technical and theoretical considerations about gradient perfusion culture for epithelia used in tissue engineering, biomaterial testing and pharmaceutical research. Minuth WW; Strehl R Biomed Mater; 2007 Jun; 2(2):R1-R11. PubMed ID: 18458434 [TBL] [Abstract][Full Text] [Related]
20. Development of Microfluidic Systems for Fabricating Cellular Multilayers. Matsuura K; Sugimoto I; Kuroda Y; Kadowaki K; Matsusaki M; Akashi M Anal Sci; 2016; 32(11):1171-1176. PubMed ID: 27829621 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]