BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

380 related articles for article (PubMed ID: 18006866)

  • 1. Muscle-derived ROS and thiol regulation in muscle fatigue.
    Ferreira LF; Reid MB
    J Appl Physiol (1985); 2008 Mar; 104(3):853-60. PubMed ID: 18006866
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Free radicals and muscle fatigue: Of ROS, canaries, and the IOC.
    Reid MB
    Free Radic Biol Med; 2008 Jan; 44(2):169-79. PubMed ID: 18191753
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Emerging roles of ROS/RNS in muscle function and fatigue.
    Westerblad H; Allen DG
    Antioxid Redox Signal; 2011 Nov; 15(9):2487-99. PubMed ID: 21375476
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of N-acetyl-cysteine on liposomal and muscle model oxidation induced by reactive oxygen, nitrogen, and sulfur.
    Brannan RG
    Meat Sci; 2011 Aug; 88(4):733-9. PubMed ID: 21474252
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of N-acetylcysteine on glutathione oxidation and fatigue during handgrip exercise.
    Matuszczak Y; Farid M; Jones J; Lansdowne S; Smith MA; Taylor AA; Reid MB
    Muscle Nerve; 2005 Nov; 32(5):633-8. PubMed ID: 16025522
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Local hindlimb antioxidant infusion does not affect muscle glucose uptake during in situ contractions in rat.
    Merry TL; Dywer RM; Bradley EA; Rattigan S; McConell GK
    J Appl Physiol (1985); 2010 May; 108(5):1275-83. PubMed ID: 20203065
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Free radical generation by skeletal muscle of adult and old mice: effect of contractile activity.
    Vasilaki A; Mansouri A; Van Remmen H; van der Meulen JH; Larkin L; Richardson AG; McArdle A; Faulkner JA; Jackson MJ
    Aging Cell; 2006 Apr; 5(2):109-17. PubMed ID: 16626390
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reactive oxygen/nitrogen species and contractile function in skeletal muscle during fatigue and recovery.
    Cheng AJ; Yamada T; Rassier DE; Andersson DC; Westerblad H; Lanner JT
    J Physiol; 2016 Sep; 594(18):5149-60. PubMed ID: 26857536
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of N-acetylcysteine on markers of skeletal muscle injury after fatiguing contractile activity.
    Pinheiro CH; Vitzel KF; Curi R
    Scand J Med Sci Sports; 2012 Feb; 22(1):24-33. PubMed ID: 20673252
    [TBL] [Abstract][Full Text] [Related]  

  • 10. N-acetylcysteine attenuates the decline in muscle Na+,K+-pump activity and delays fatigue during prolonged exercise in humans.
    McKenna MJ; Medved I; Goodman CA; Brown MJ; Bjorksten AR; Murphy KT; Petersen AC; Sostaric S; Gong X
    J Physiol; 2006 Oct; 576(Pt 1):279-88. PubMed ID: 16840514
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of N-acetylcysteine on skeletal muscle structure and function in a mouse model of peripheral arterial insufficiency.
    Roseguini BT; Silva LM; Polotow TG; Barros MP; Souccar C; Han SW
    J Vasc Surg; 2015 Mar; 61(3):777-86. PubMed ID: 24388697
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxidative stress and pathology in muscular dystrophies: focus on protein thiol oxidation and dysferlinopathies.
    Terrill JR; Radley-Crabb HG; Iwasaki T; Lemckert FA; Arthur PG; Grounds MD
    FEBS J; 2013 Sep; 280(17):4149-64. PubMed ID: 23332128
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of N-acetylcysteine on isolated skeletal muscle contractile properties after an acute bout of aerobic exercise.
    Jannig PR; Alves CRR; Voltarelli VA; Bozi LHM; Vieira JS; Brum PC; Bechara LRG
    Life Sci; 2017 Dec; 191():46-51. PubMed ID: 29030088
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interplay of oxidants and antioxidants during exercise: implications for muscle health.
    Gomez-Cabrera MC; ViƱa J; Ji LL
    Phys Sportsmed; 2009 Dec; 37(4):116-23. PubMed ID: 20048548
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cytoprotective Role of Nrf2 in Electrical Pulse Stimulated C2C12 Myotube.
    Horie M; Warabi E; Komine S; Oh S; Shoda J
    PLoS One; 2015; 10(12):e0144835. PubMed ID: 26658309
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Redox modulation of contractile function in respiratory and limb skeletal muscle.
    Smith MA; Reid MB
    Respir Physiol Neurobiol; 2006 Apr; 151(2-3):229-41. PubMed ID: 16481226
    [TBL] [Abstract][Full Text] [Related]  

  • 17. N-acetylcysteine enhances muscle cysteine and glutathione availability and attenuates fatigue during prolonged exercise in endurance-trained individuals.
    Medved I; Brown MJ; Bjorksten AR; Murphy KT; Petersen AC; Sostaric S; Gong X; McKenna MJ
    J Appl Physiol (1985); 2004 Oct; 97(4):1477-85. PubMed ID: 15194675
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exercise-induced oxidative stress: Friend or foe?
    Powers SK; Deminice R; Ozdemir M; Yoshihara T; Bomkamp MP; Hyatt H
    J Sport Health Sci; 2020 Sep; 9(5):415-425. PubMed ID: 32380253
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Free radicals, metals and antioxidants in oxidative stress-induced cancer.
    Valko M; Rhodes CJ; Moncol J; Izakovic M; Mazur M
    Chem Biol Interact; 2006 Mar; 160(1):1-40. PubMed ID: 16430879
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sensitization effect of thimerosal is mediated in vitro via reactive oxygen species and calcium signaling.
    Migdal C; Foggia L; Tailhardat M; Courtellemont P; Haftek M; Serres M
    Toxicology; 2010; 274(1-3):1-9. PubMed ID: 20457211
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.