BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 18006870)

  • 1. Intravital microscopy of the murine pulmonary microcirculation.
    Tabuchi A; Mertens M; Kuppe H; Pries AR; Kuebler WM
    J Appl Physiol (1985); 2008 Feb; 104(2):338-46. PubMed ID: 18006870
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Congenital erythropoietin over-expression causes "anti-pulmonary hypertensive" structural and functional changes in mice, both in normoxia and hypoxia.
    Weissmann N; Manz D; Buchspies D; Keller S; Mehling T; Voswinckel R; Quanz K; Ghofrani HA; Schermuly RT; Fink L; Seeger W; Gassmann M; Grimminger F
    Thromb Haemost; 2005 Sep; 94(3):630-8. PubMed ID: 16268482
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pulmonary microvascular changes during sepsis: evaluation using intravital videomicroscopy.
    McCormack DG; Mehta S; Tyml K; Scott JA; Potter R; Rohan M
    Microvasc Res; 2000 Sep; 60(2):131-40. PubMed ID: 10964587
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Leukocyte kinetics in pulmonary microcirculation: intravital fluorescence microscopic study.
    Kuebler WM; Kuhnle GE; Groh J; Goetz AE
    J Appl Physiol (1985); 1994 Jan; 76(1):65-71. PubMed ID: 8175549
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thromboxane receptor analog, U-46619, redistributes pulmonary microvascular perfusion in isolated rat lungs.
    Conhaim RL; Watson KE; Heisey DM; Leverson GE; Harms BA
    J Appl Physiol (1985); 2004 Jan; 96(1):245-52. PubMed ID: 12959963
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sites and ionic mechanisms of hypoxic vasoconstriction in frog skin.
    Malvin GM; Walker BR
    Am J Physiol Regul Integr Comp Physiol; 2001 May; 280(5):R1308-14. PubMed ID: 11294748
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Basic features of hypoxic pulmonary vasoconstriction in mice.
    Weissmann N; Akkayagil E; Quanz K; Schermuly RT; Ghofrani HA; Fink L; Hänze J; Rose F; Seeger W; Grimminger F
    Respir Physiol Neurobiol; 2004 Jan; 139(2):191-202. PubMed ID: 15123002
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isoflurane inhibits hypoxic pulmonary vasoconstriction. An in vivo fluorescence microscopic study in rabbits.
    Groh J; Kuhnle GE; Sckell A; Ney L; Goetz AE
    Anesthesiology; 1994 Dec; 81(6):1436-44. PubMed ID: 7992913
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Abrogation of thrombin-induced increase in pulmonary microvascular permeability in PAR-1 knockout mice.
    Vogel SM; Gao X; Mehta D; Ye RD; John TA; Andrade-Gordon P; Tiruppathi C; Malik AB
    Physiol Genomics; 2000 Dec; 4(2):137-145. PubMed ID: 11120874
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pulmonary vascular and airway responses to systemic vasoconstrictors in anesthetized BALB/c mice.
    Wang M; Shibamoto T; Shinomiya S; Yamamoto Y; Kurata Y; Kuda Y; Tanida M; Toga H
    J Cardiovasc Pharmacol; 2015 Apr; 65(4):325-34. PubMed ID: 25853950
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temporal profile of thrombogenesis in the cerebral microcirculation after traumatic brain injury in mice.
    Schwarzmaier SM; Kim SW; Trabold R; Plesnila N
    J Neurotrauma; 2010 Jan; 27(1):121-30. PubMed ID: 19803784
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hypoxic vasoconstriction in pulmonary arterioles and venules.
    Hillier SC; Graham JA; Hanger CC; Godbey PS; Glenny RW; Wagner WW
    J Appl Physiol (1985); 1997 Apr; 82(4):1084-90. PubMed ID: 9104843
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nitric oxide (NO)-dependent but not NO-independent guanylate cyclase activation attenuates hypoxic vasoconstriction in rabbit lungs.
    Weissmann N; Voswinckel R; Tadic A; Hardebusch T; Ghofrani HA; Schermuly RT; Seeger W; Grimminger F
    Am J Respir Cell Mol Biol; 2000 Aug; 23(2):222-7. PubMed ID: 10919989
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hypoxic vasoconstriction of partial muscular intra-acinar pulmonary arteries in murine precision cut lung slices.
    Paddenberg R; König P; Faulhammer P; Goldenberg A; Pfeil U; Kummer W
    Respir Res; 2006 Jun; 7(1):93. PubMed ID: 16808843
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of airway and vascular responses in murine lungs.
    Held HD; Martin C; Uhlig S
    Br J Pharmacol; 1999 Mar; 126(5):1191-9. PubMed ID: 10205008
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potassium channels modulate cerebral autoregulation during acute hypertension.
    Paternò R; Heistad DD; Faraci FM
    Am J Physiol Heart Circ Physiol; 2000 Jun; 278(6):H2003-7. PubMed ID: 10843899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activation of thromboxane receptors and the induction of vasomotion in the hamster cheek pouch microcirculation.
    Verbeuren TJ; Vallez MO; Lavielle G; Bouskela E
    Br J Pharmacol; 1997 Nov; 122(5):859-66. PubMed ID: 9384501
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Longchain n-3 polyunsaturated fatty acids and microvascular reactivity: observation in the hamster cheek pouch.
    Conde CM; Cyrino FZ; Bottino DA; Gardette J; Bouskela E
    Microvasc Res; 2007 May; 73(3):237-47. PubMed ID: 17196224
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Basal lung mechanics and airway and pulmonary vascular responsiveness in different inbred mouse strains.
    Held HD; Uhlig S
    J Appl Physiol (1985); 2000 Jun; 88(6):2192-8. PubMed ID: 10846035
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chronic hypoxia increases MCA contractile response to U-46619 by reducing NO production and/or activity.
    Sillau AH; McCullough RE; Dyckes R; White MM; Moore LG
    J Appl Physiol (1985); 2002 May; 92(5):1859-64. PubMed ID: 11960934
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.