These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 1800708)

  • 1. Interfacial dehydration by anesthetics: an electrocapillary study of surface charge density of adsorbed monolayer.
    Yoshida T; Okabayashi H; Kamaya H; Ueda I
    J Pharm Sci; 1991 Sep; 80(9):852-4. PubMed ID: 1800708
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Atypical Langmuir adsorption of inhalation anesthetics on phospholipid monolayer at various compressional states: difference between alkane-type and ether-type anesthetics.
    Suezaki Y; Shibata A; Kamaya H; Ueda I
    Biochim Biophys Acta; 1985 Jul; 817(1):139-46. PubMed ID: 3839136
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Local anesthetics destabilize lipid membranes by breaking hydration shell: infrared and calorimetry studies.
    Ueda I; Chiou JS; Krishna PR; Kamaya H
    Biochim Biophys Acta; 1994 Mar; 1190(2):421-9. PubMed ID: 8142445
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anesthetic-protein interaction: surface potential of bovine serum albumin estimated by a pH-sensitive dye.
    Mashimo T; Kamaya H; Ueda I
    Mol Pharmacol; 1986 Feb; 29(2):149-54. PubMed ID: 3951428
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Infrared spectra of phospholipid membranes: interfacial dehydration by volatile anesthetics and phase transition.
    Tsai YS; Ma SM; Nishimura S; Ueda I
    Biochim Biophys Acta; 1990 Feb; 1022(2):245-50. PubMed ID: 2306457
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Saturable and unsaturable binding of a volatile anesthetic enflurane with model lipid vesicle membranes.
    Yoshida T; Okabayashi H; Kamaya H; Ueda I
    Biochim Biophys Acta; 1989 Mar; 979(3):287-93. PubMed ID: 2923883
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fourier transform infrared studies on phospholipid hydration: phosphate-oriented hydrogen bonding and its attenuation by volatile anesthetics.
    Tsai YS; Ma SM; Kamaya H; Ueda I
    Mol Pharmacol; 1987 Jun; 31(6):623-30. PubMed ID: 3600607
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Do anesthetics fluidize membranes?
    Ueda I; Hirakawa M; Arakawa K; Kamaya H
    Anesthesiology; 1986 Jan; 64(1):67-71. PubMed ID: 3942336
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adsorption behavior of the cetyltrimethylammonium chloride reverse micelles on porous silica gels.
    Nakada K; Mohammadzai IU; Tsukahara S; Fujiwara T
    Anal Sci; 2009 Feb; 25(2):201-6. PubMed ID: 19212054
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of subarachnoid anesthetic effect of emulsified volatile anesthetics in rats.
    Guo J; Zhou C; Liang P; Huang H; Li F; Chen X; Liu J
    Int J Clin Exp Pathol; 2014; 7(12):8748-55. PubMed ID: 25674241
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential membrane effects of general and local anesthetics.
    Diamond BI; Havdala HS; Sabelli HC
    Anesthesiology; 1975 Dec; 43(6):651-60. PubMed ID: 1190539
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface activities of tertiary amine local anesthetics at air/water interface in the presence and absence of phospholipid monolayers.
    Lin HC; Ueda I; Lin SH; Shieh DD; Kamaya H; Eyring H
    Biochim Biophys Acta; 1980 May; 598(1):51-65. PubMed ID: 7417430
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of volatile anesthetics, thiopental, and ketamine on spontaneous and depolarization-evoked dopamine release from striatal synaptosomes in the rat.
    Mantz J; Varlet C; Lecharny JB; Henzel D; Lenot P; Desmonts JM
    Anesthesiology; 1994 Feb; 80(2):352-63. PubMed ID: 8311317
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Blood flow and tissue oxygen pressures of liver and pancreas in rats: effects of volatile anesthetics and of hemorrhage.
    Vollmar B; Conzen PF; Kerner T; Habazettl H; Vierl M; Waldner H; Peter K
    Anesth Analg; 1992 Sep; 75(3):421-30. PubMed ID: 1510264
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Membrane expansion and inhalation anesthetics. Mean excess volume hypothesis.
    Mori T; Matubayasi N; Ueda I
    Mol Pharmacol; 1984 Jan; 25(1):123-30. PubMed ID: 6546781
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A conformational model for the action of general anesthetics at the membrane level. II. Experimental observations on the effects of anesthetics on lipid fluidity and lipid protein interactions.
    Lenaz G; Mazzanti L; Curatola G; Bertoli E; Bigi A; Zolese G
    Ital J Biochem; 1978; 27(6):401-30. PubMed ID: 755801
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms of chronotropic effects of volatile inhalation anesthetics.
    Krisna G; Paradise RR
    Anesth Analg; 1977; 56(2):173-81. PubMed ID: 15471
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adsorption of local anesthetics on phospholipid membranes.
    Ohki S
    Biochim Biophys Acta; 1984 Oct; 777(1):56-66. PubMed ID: 6487617
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adsorption of inhalational anesthetics and hydrochlorofluorocarbons on activated carbons as a biological model.
    Tanada S; Kawasaki N; Nakamura T; Abe I
    Chem Pharm Bull (Tokyo); 1997 Feb; 45(2):231-5. PubMed ID: 9118438
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermogenesis in brown adipocytes is inhibited by volatile anesthetic agents. A factor contributing to hypothermia in infants?
    Ohlson KB; Mohell N; Cannon B; Lindahl SG; Nedergaard J
    Anesthesiology; 1994 Jul; 81(1):176-83. PubMed ID: 8042786
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.