These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 1800708)

  • 41. Volatile anesthetics and glutamate activation of N-methyl-D-aspartate receptors.
    Martin DC; Plagenhoef M; Abraham J; Dennison RL; Aronstam RS
    Biochem Pharmacol; 1995 Mar; 49(6):809-17. PubMed ID: 7702639
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Adsorption of inhalation anesthetics on the air/water interface and the effect of water structure.
    Shibata A; Suezaki Y; Kamaya H; Ueda I
    Biochim Biophys Acta; 1981 Aug; 646(1):126-34. PubMed ID: 7272297
    [No Abstract]   [Full Text] [Related]  

  • 43. [Immobilization of a sensitive plant, Mimosa pudica L., by volatile anesthetics].
    Okazaki N; Takai K; Sato T
    Masui; 1993 Aug; 42(8):1190-3. PubMed ID: 8366560
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Anesthetics affect the uptake but not the depolarization-evoked release of GABA in rat striatal synaptosomes.
    Mantz J; Lecharny JB; Laudenbach V; Henzel D; Peytavin G; Desmonts JM
    Anesthesiology; 1995 Feb; 82(2):502-11. PubMed ID: 7856908
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Pressure-anesthetic antagonism on the phase separation of non-ionic surfactant micelles.
    Kaneshina S; Ueda I; Kamaya H; Eyring H
    Biochim Biophys Acta; 1980 Dec; 603(2):237-44. PubMed ID: 7459351
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Interactions between volatile anesthetics and dipalmitoyl phosphatidylcholine liposomes as studied by fluorometry with a thiacarbocyanine dye.
    Tsukamoto I; Yokono S; Shirakawa Y; Kinoshita H; Komatsu H; Aibiki M; Ogli K
    J Anesth; 1992 Jan; 6(1):38-44. PubMed ID: 15278581
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effects of surgical stress and volatile anesthetics on left ventricular global and regional function in patients with coronary artery disease. Evaluation by computer-assisted two-dimensional quantitative transesophageal echocardiography.
    Houltz E; Gustavsson T; Caidahl K; Kirnö K; Lamm C; Milocco I; Ricksten SE
    Anesth Analg; 1992 Nov; 75(5):679-87. PubMed ID: 1416118
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Anesthetic-protein interaction. Random versus helix polylysine monolayers and interaction with 1-alkanols.
    Shibata A; Suezaki Y; Kamaya H; Ueda I
    Biochim Biophys Acta; 1984 May; 772(3):383-92. PubMed ID: 6722153
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Titration calorimetry of anesthetic-protein interaction: negative enthalpy of binding and anesthetic potency.
    Ueda I; Yamanaka M
    Biophys J; 1997 Apr; 72(4):1812-7. PubMed ID: 9083685
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Anterior shift of the dominant EEG rhytham during anesthesia in the Java monkey: correlation with anesthetic potency.
    Tinker JH; Sharbrough FW; Michenfelder JD
    Anesthesiology; 1977 Apr; 46(4):252-9. PubMed ID: 402870
    [TBL] [Abstract][Full Text] [Related]  

  • 51. General anesthetics directly inhibit electron mobility: dipole dispersion theory of anesthetic action.
    Hameroff SR; Watt RC; Borel JD; Carlson G
    Physiol Chem Phys; 1982; 14(3):183-7. PubMed ID: 7185051
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The enhancement of proton/hydroxyl flow across lipid vesicles by inhalation anesthetics.
    Raines DE; Cafiso DS
    Anesthesiology; 1989 Jan; 70(1):57-63. PubMed ID: 2536253
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Characterisation of phase transition in adsorbed monolayers at the air/water interface.
    Vollhardt D; Fainerman VB
    Adv Colloid Interface Sci; 2010 Feb; 154(1-2):1-19. PubMed ID: 20153454
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Mutations conferring new patterns of sensitivity to volatile anesthetics in Caenorhabditis elegans.
    Morgan PG; Sedensky MM
    Anesthesiology; 1994 Oct; 81(4):888-98. PubMed ID: 7943840
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Local anesthetics and pressure: a comparison of dibucaine binding to lipid monolayers and bilayers.
    Seelig A
    Biochim Biophys Acta; 1987 May; 899(2):196-204. PubMed ID: 3580365
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Correlation of general anesthetic potency with solubility in membranes.
    Janoff AS; Pringle MJ; Miller KW
    Biochim Biophys Acta; 1981 Nov; 649(1):125-8. PubMed ID: 7306543
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Langmuir monolayer properties of perfluorinated double long-chain salts with divalent counterions of separate electric charge at the air-water interface.
    Matsumoto Y; Nakahara H; Moroi Y; Shibata O
    Langmuir; 2007 Sep; 23(19):9629-40. PubMed ID: 17696455
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effect of K+ channel blockade with tetraethylammonium on anesthetic-induced relaxation in canine cerebral and coronary arteries.
    Marijic J; Buljubasïc N; Coughlan MG; Kampine JP; Bosnjak ZJ
    Anesthesiology; 1992 Nov; 77(5):948-55. PubMed ID: 1332551
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Electrokinetic charge of the anesthetic-induced bR480 and bR380 spectral forms of bacteriorhodopsin.
    Taneva SG; Caaveiro JM; Petkanchin IB; Goñi FM
    Biochim Biophys Acta; 1995 Jun; 1236(2):331-7. PubMed ID: 7794973
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Osmolarity determines the solubility of anesthetics in aqueous solutions at 37 degrees C.
    Lerman J; Willis MM; Gregory GA; Eger EI
    Anesthesiology; 1983 Dec; 59(6):554-8. PubMed ID: 6418030
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.