These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 18007186)

  • 41. The evolution of brain activation during temporal processing.
    Rao SM; Mayer AR; Harrington DL
    Nat Neurosci; 2001 Mar; 4(3):317-23. PubMed ID: 11224550
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Neuroscience. Mental models and musical minds.
    Zatorre RJ; Krumhansl CL
    Science; 2002 Dec; 298(5601):2138-9. PubMed ID: 12481121
    [No Abstract]   [Full Text] [Related]  

  • 43. Neural characteristics of successful and less successful speech and word learning in adults.
    Wong PC; Perrachione TK; Parrish TB
    Hum Brain Mapp; 2007 Oct; 28(10):995-1006. PubMed ID: 17133399
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Audition of laughing and crying leads to right amygdala activation in a low-noise fMRI setting.
    Sander K; Brechmann A; Scheich H
    Brain Res Brain Res Protoc; 2003 May; 11(2):81-91. PubMed ID: 12738003
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Frequency preference and attention effects across cortical depths in the human primary auditory cortex.
    De Martino F; Moerel M; Ugurbil K; Goebel R; Yacoub E; Formisano E
    Proc Natl Acad Sci U S A; 2015 Dec; 112(52):16036-41. PubMed ID: 26668397
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Spectral and temporal processing in the human auditory cortex--revisited.
    Schönwiesner M; Rübsamen R; von Cramon DY
    Ann N Y Acad Sci; 2005 Dec; 1060():89-92. PubMed ID: 16597754
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Sensory cortical response to uncertainty and low salience during recognition of affective cues in musical intervals.
    Bravo F; Cross I; Stamatakis EA; Rohrmeier M
    PLoS One; 2017; 12(4):e0175991. PubMed ID: 28422990
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Modulation and task effects in auditory processing measured using fMRI.
    Hall DA; Haggard MP; Akeroyd MA; Summerfield AQ; Palmer AR; Elliott MR; Bowtell RW
    Hum Brain Mapp; 2000 Jul; 10(3):107-19. PubMed ID: 10912590
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Cortical networks for auditory detection with and without informational masking: Task effects and implications for conscious perception.
    Wiegand K; Heiland S; Uhlig CH; Dykstra AR; Gutschalk A
    Neuroimage; 2018 Feb; 167():178-190. PubMed ID: 29170071
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Human brain mapping of auditory imagery: event-related functional MRI study.
    Yoo SS; Lee CU; Choi BG
    Neuroreport; 2001 Oct; 12(14):3045-9. PubMed ID: 11568634
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Assessing the influence of scanner background noise on auditory processing. I. An fMRI study comparing three experimental designs with varying degrees of scanner noise.
    Gaab N; Gabrieli JD; Glover GH
    Hum Brain Mapp; 2007 Aug; 28(8):703-20. PubMed ID: 17080440
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Behavioral Quantification of Audiomotor Transformations in Improvising and Score-Dependent Musicians.
    Harris R; van Kranenburg P; de Jong BM
    PLoS One; 2016; 11(11):e0166033. PubMed ID: 27835631
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Cortical representation of hearing restoration in patients with sudden deafness.
    Suzuki M; Kouzaki H; Nishida Y; Shiino A; Ito R; Kitano H
    Neuroreport; 2002 Oct; 13(14):1829-32. PubMed ID: 12395134
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Learning of new sound categories shapes neural response patterns in human auditory cortex.
    Ley A; Vroomen J; Hausfeld L; Valente G; De Weerd P; Formisano E
    J Neurosci; 2012 Sep; 32(38):13273-80. PubMed ID: 22993443
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Brain networks of novelty-driven involuntary and cued voluntary auditory attention shifting.
    Huang S; Belliveau JW; Tengshe C; Ahveninen J
    PLoS One; 2012; 7(8):e44062. PubMed ID: 22937153
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Silent and continuous fMRI scanning differentially modulate activation in an auditory language comprehension task.
    Schmidt CF; Zaehle T; Meyer M; Geiser E; Boesiger P; Jancke L
    Hum Brain Mapp; 2008 Jan; 29(1):46-56. PubMed ID: 17318832
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Mirror-symmetric tonotopic maps in human primary auditory cortex.
    Formisano E; Kim DS; Di Salle F; van de Moortele PF; Ugurbil K; Goebel R
    Neuron; 2003 Nov; 40(4):859-69. PubMed ID: 14622588
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Cholinergic modulation of experience-dependent plasticity in human auditory cortex.
    Thiel CM; Friston KJ; Dolan RJ
    Neuron; 2002 Aug; 35(3):567-74. PubMed ID: 12165477
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Mapping feature-sensitivity and attentional modulation in human auditory cortex with functional magnetic resonance imaging.
    Paltoglou AE; Sumner CJ; Hall DA
    Eur J Neurosci; 2011 May; 33(9):1733-41. PubMed ID: 21447093
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Modulation of auditory cortex activation by sound presentation rate and attention.
    Rinne T; Pekkola J; Degerman A; Autti T; Jääskeläinen IP; Sams M; Alho K
    Hum Brain Mapp; 2005 Oct; 26(2):94-9. PubMed ID: 15852467
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.