BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 18007440)

  • 1. Radical oxidative cyclization of spiroacetals to bis-spiroacetals: an overview.
    Brimble MA
    Molecules; 2004 May; 9(6):394-404. PubMed ID: 18007440
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of the bis-spiroacetal moiety of spirolides B and D.
    Meilert K; Brimble MA
    Org Lett; 2005 Aug; 7(16):3497-500. PubMed ID: 16048326
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of the bis-spiroacetal moiety of the shellfish toxins spirolides B and D using an iterative oxidative radical cyclization strategy.
    Meilert K; Brimble MA
    Org Biomol Chem; 2006 Jun; 4(11):2184-92. PubMed ID: 16729128
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of natural products containing spiroketals via intramolecular hydrogen abstraction.
    Sperry J; Liu YC; Brimble MA
    Org Biomol Chem; 2010 Jan; 8(1):29-38. PubMed ID: 20024126
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of the 1,6,8-trioxadispiro[4.1.5.2]tetradec-11-ene ring system present in the spirolide family of shellfish toxins and its conversion into a 1,6,8-trioxadispiro[4.1.5.2]-tetradec-9-en-12-ol via base-induced rearrangement of an epoxide.
    Brimble MA; Furkert DP
    Org Biomol Chem; 2004 Dec; 2(24):3573-83. PubMed ID: 15592615
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Site-specific modification of the anticancer and antituberculosis polyether salinomycin by biosynthetic engineering.
    Luhavaya H; Williams SR; Hong H; Gonzaga de Oliveira L; Leadlay PF
    Chembiochem; 2014 Sep; 15(14):2081-5. PubMed ID: 25155178
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spiroacetal formation through telescoped cycloaddition and carbon-hydrogen bond functionalization: total synthesis of bistramide A.
    Han X; Floreancig PE
    Angew Chem Int Ed Engl; 2014 Oct; 53(41):11075-8. PubMed ID: 25196585
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of the C10-C22 bis-spiroacetal domain of spirolides B and D via iterative oxidative radical cyclization.
    Furkert DP; Brimble MA
    Org Lett; 2002 Oct; 4(21):3655-8. PubMed ID: 12375911
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rational synthesis of contra-thermodynamic spiroacetals by reductive cyclizations.
    Takaoka LR; Buckmelter AJ; LaCruz TE; Rychnovsky SD
    J Am Chem Soc; 2005 Jan; 127(2):528-9. PubMed ID: 15643869
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Total synthesis of pectenotoxin-2.
    Fujiwara K; Suzuki Y; Koseki N; Aki Y; Kikuchi Y; Murata S; Yamamoto F; Kawamura M; Norikura T; Matsue H; Murai A; Katoono R; Kawai H; Suzuki T
    Angew Chem Int Ed Engl; 2014 Jan; 53(3):780-4. PubMed ID: 24288200
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anticancer agents from the Australian tropical rainforest: Spiroacetals EBC-23, 24, 25, 72, 73, 75 and 76.
    Dong L; Schill H; Grange RL; Porzelle A; Johns JP; Parsons PG; Gordon VA; Reddell PW; Williams CM
    Chemistry; 2009 Oct; 15(42):11307-18. PubMed ID: 19750529
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon hydroxylation of alkyltetrahydropyranols: a paradigm for spiroacetal biosynthesis in Bactrocera sp.
    Stok JE; Lang CS; Schwartz BD; Fletcher MT; Kitching W; De Voss JJ
    Org Lett; 2001 Feb; 3(3):397-400. PubMed ID: 11428023
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Convergent access to bis-spiroacetals through a Sila-Stetter-ketalization cascade.
    Labarre-Lainé J; Beniazza R; Desvergnes V; Landais Y
    Org Lett; 2013 Sep; 15(18):4706-9. PubMed ID: 24000801
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of the spirofungin B core by a reductive cyclization strategy.
    La Cruz TE; Rychnovsky SD
    Org Lett; 2005 Apr; 7(9):1873-5. PubMed ID: 15844928
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Construction of fused bis(pyran) units from enones via a hydrosilylation-dihydroxylation-acetalization-reduction sequence.
    Liu X; West FG
    Chem Commun (Camb); 2006 Dec; (48):5036-8. PubMed ID: 17146519
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biosynthesis of insect spiroacetals.
    Booth YK; Kitching W; De Voss JJ
    Nat Prod Rep; 2009 Apr; 26(4):490-525. PubMed ID: 19642419
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxidative carbon-carbon bond cleavage is a key step in spiroacetal biosynthesis in the fruit fly Bactrocera cacuminata.
    Singh AA; Rowley JA; Schwartz BD; Kitching W; De Voss JJ
    J Org Chem; 2014 Sep; 79(17):7799-821. PubMed ID: 24914610
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A catalytic multicomponent coupling reaction for the enantioselective synthesis of spiroacetals.
    Cala L; Mendoza A; Fañanás FJ; Rodríguez F
    Chem Commun (Camb); 2013 Apr; 49(26):2715-7. PubMed ID: 23435368
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of stereoisomers of Artemisia and Chrysanthemum bis(acetylenic) enol ether spiroacetals.
    Wu B; Feast GC; Thompson AL; Robertson J
    J Org Chem; 2012 Dec; 77(23):10623-30. PubMed ID: 23113738
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemistry and biology of spiroacetals from myxobacteria.
    Ricca M; Rizzacasa MA
    Org Biomol Chem; 2021 Apr; 19(13):2871-2890. PubMed ID: 33683270
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.