These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 18007767)

  • 1. High-resolution optical coherence tomography over a large depth range with an axicon lens.
    Ding Z; Ren H; Zhao Y; Nelson JS; Chen Z
    Opt Lett; 2002 Feb; 27(4):243-5. PubMed ID: 18007767
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multifocal spectral-domain optical coherence tomography based on Bessel beam for extended imaging depth.
    Yi L; Sun L; Ding W
    J Biomed Opt; 2017 Oct; 22(10):1-8. PubMed ID: 29076306
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Miniature all-fiber axicon probe with extended Bessel focus for optical coherence tomography.
    Wang W; Wang G; Ma J; Cheng L; Guan BO
    Opt Express; 2019 Jan; 27(2):358-366. PubMed ID: 30696123
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bessel beam spectral-domain high-resolution optical coherence tomography with micro-optic axicon providing extended focusing range.
    Lee KS; Rolland JP
    Opt Lett; 2008 Aug; 33(15):1696-8. PubMed ID: 18670507
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Focus-extension by depth-encoded synthetic aperture in Optical Coherence Tomography.
    Mo J; de Groot M; de Boer JF
    Opt Express; 2013 Apr; 21(8):10048-61. PubMed ID: 23609710
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrasound Axicon: Systematic Approach to Optimize Focusing Resolution through Human Skull Bone.
    Acquaticci F; Lew SE; Gwirc SN
    Materials (Basel); 2019 Oct; 12(20):. PubMed ID: 31635195
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relationship between the source size at the diffuser plane and the longitudinal spatial coherence function of the optical coherence microscopy system.
    Usmani K; Ahmad A; Joshi R; Dubey V; Butola A; Mehta DS
    J Opt Soc Am A Opt Image Sci Vis; 2019 Dec; 36(12):D41-D46. PubMed ID: 31873380
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Invariant resolution dynamic focus OCM based on liquid crystal lens.
    Murali S; Lee KS; Rolland JP
    Opt Express; 2007 Nov; 15(24):15854-62. PubMed ID: 19550871
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization for Axial Resolution, Depth Range, and Sensitivity of Spectral Domain Optical Coherence Tomography at 1.3 µm.
    Lee SW; Jeong HW; Kim BM; Ahn YC; Jung W; Chen Z
    J Korean Phys Soc; 2009 Dec; 55(6):2354-2360. PubMed ID: 23239900
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultra-broadband axicon transducer for optoacoustic endoscopy.
    Ali Z; Zakian C; Ntziachristos V
    Sci Rep; 2021 Jan; 11(1):1654. PubMed ID: 33462279
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two-photon excitation fluorescence microscopy with a high depth of field using an axicon.
    Dufour P; Piché M; De Koninck Y; McCarthy N
    Appl Opt; 2006 Dec; 45(36):9246-52. PubMed ID: 17151766
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generation of a strong uniform transversely polarized nondiffracting beam using a high-numerical-aperture lens axicon with a binary phase mask.
    Suresh P; Mariyal C; Rajesh KB; Pillai TV; Jaroszewicz Z
    Appl Opt; 2013 Feb; 52(4):849-53. PubMed ID: 23385927
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect on the longitudinal coherence properties of a pseudothermal light source as a function of source size and temporal coherence.
    Ahmad A; Mahanty T; Dubey V; Butola A; Ahluwalia BS; Mehta DS
    Opt Lett; 2019 Apr; 44(7):1817-1820. PubMed ID: 30933155
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Endoscopic micro-optical coherence tomography with extended depth of focus using a binary phase spatial filter.
    Kim J; Xing J; Nam HS; Song JW; Kim JW; Yoo H
    Opt Lett; 2017 Feb; 42(3):379-382. PubMed ID: 28146481
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Systematic design of an anastigmatic lens axicon.
    Goncharov AV; Burvall A; Dainty C
    Appl Opt; 2007 Aug; 46(24):6076-80. PubMed ID: 17712369
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Line-field confocal time-domain optical coherence tomography with dynamic focusing.
    Dubois A; Levecq O; Azimani H; Davis A; Ogien J; Siret D; Barut A
    Opt Express; 2018 Dec; 26(26):33534-33542. PubMed ID: 30650800
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Depth-encoded synthetic aperture optical coherence tomography of biological tissues with extended focal depth.
    Mo J; de Groot M; de Boer JF
    Opt Express; 2015 Feb; 23(4):4935-45. PubMed ID: 25836528
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monte Carlo modeling of optical coherence tomography imaging through turbid media.
    Lu Q; Gan X; Gu M; Luo Q
    Appl Opt; 2004 Mar; 43(8):1628-37. PubMed ID: 15046164
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of a refractive linear axicon with distant depth of field and no central blocking.
    Chebbi B; Golub I; Breygin P
    Appl Opt; 2013 Dec; 52(35):8572-5. PubMed ID: 24513903
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lensed fiber probes designed as an alternative to bulk probes in optical coherence tomography.
    Ryu SY; Choi HY; Na J; Choi WJ; Lee BH
    Appl Opt; 2008 Apr; 47(10):1510-6. PubMed ID: 18382579
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.