These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 18007817)

  • 1. Imaging and quantifying transverse flow velocity with the Doppler bandwidth in a phase-resolved functional optical coherence tomography.
    Ren H; Brecke KM; Ding Z; Zhao Y; Nelson JS; Chen Z
    Opt Lett; 2002 Mar; 27(6):409-11. PubMed ID: 18007817
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative lateral and axial flow imaging with optical coherence microscopy and tomography.
    Bouwens A; Szlag D; Szkulmowski M; Bolmont T; Wojtkowski M; Lasser T
    Opt Express; 2013 Jul; 21(15):17711-29. PubMed ID: 23938644
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurement of absolute flow velocity vector using dual-angle, delay-encoded Doppler optical coherence tomography.
    Pedersen CJ; Huang D; Shure MA; Rollins AM
    Opt Lett; 2007 Mar; 32(5):506-8. PubMed ID: 17392903
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Doppler angle and flow velocity mapping by combined Doppler shift and Doppler bandwidth measurements in optical Doppler tomography.
    Piao D; Otis LL; Zhu Q
    Opt Lett; 2003 Jul; 28(13):1120-2. PubMed ID: 12879927
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transit-time analysis based on delay-encoded beam shape for velocity vector quantification by spectral-domain Doppler optical coherence tomography.
    Meng J; Ding Z; Li J; Wang K; Wu T
    Opt Express; 2010 Jan; 18(2):1261-70. PubMed ID: 20173950
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantifying Doppler angle and mapping flow velocity by a combination of Doppler-shift and Doppler-bandwidth measurements in optical Doppler tomography.
    Piao D; Zhu Q
    Appl Opt; 2003 Sep; 42(25):5158-66. PubMed ID: 12962396
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of a detector dead time in phase-resolved Doppler analysis using spectral domain optical coherence tomography.
    Walther J; Koch E
    J Opt Soc Am A Opt Image Sci Vis; 2017 Feb; 34(2):241-251. PubMed ID: 28157850
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Signal power decrease due to fringe washout as an extension of the limited Doppler flow measurement range in spectral domain optical coherence tomography.
    Walther J; Mueller G; Morawietz H; Koch E
    J Biomed Opt; 2010; 15(4):041511. PubMed ID: 20799789
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transverse motion as a source of noise and reduced correlation of the Doppler phase shift in spectral domain OCT.
    Walther J; Koch E
    Opt Express; 2009 Oct; 17(22):19698-713. PubMed ID: 19997190
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spectroscopic Doppler analysis for visible-light optical coherence tomography.
    Shu X; Liu W; Duan L; Zhang HF
    J Biomed Opt; 2017 Oct; 22(12):1-8. PubMed ID: 29043714
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flow measurement without phase information in optical coherence tomography images.
    Barton J; Stromski S
    Opt Express; 2005 Jul; 13(14):5234-9. PubMed ID: 19498514
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relation of joint spectral and time domain optical coherence tomography (jSTdOCT) and phase-resolved Doppler OCT.
    Walther J; Koch E
    Opt Express; 2014 Sep; 22(19):23129-46. PubMed ID: 25321783
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparison of Doppler optical coherence tomography methods.
    Liu G; Lin AJ; Tromberg BJ; Chen Z
    Biomed Opt Express; 2012 Oct; 3(10):2669-80. PubMed ID: 23082305
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Doppler imaging with dual-detection full-range frequency domain optical coherence tomography.
    Meemon P; Lee KS; Rolland JP
    Biomed Opt Express; 2010 Aug; 1(2):537-552. PubMed ID: 21258488
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity.
    Zhao Y; Chen Z; Saxer C; Xiang S; de Boer JF; Nelson JS
    Opt Lett; 2000 Jan; 25(2):114-6. PubMed ID: 18059800
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measurement of the absolute velocity of blood flow in early-stage chick embryos using spectral domain optical coherence tomography.
    Ma ZH; Ma YS; Zhao YQ; Liu J; Liu JH; Lv JT; Wang Y
    Appl Opt; 2017 Nov; 56(31):8832-8837. PubMed ID: 29091702
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accuracy and noise in optical Doppler tomography studied by Monte Carlo simulation.
    Lindmo T; Smithies DJ; Chen Z; Nelson JS; Milner TE
    Phys Med Biol; 1998 Oct; 43(10):3045-64. PubMed ID: 9814534
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Angle-insensitive flow measurement using Doppler bandwidth.
    Yeung KW
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(3):574-80. PubMed ID: 18244209
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measurement of absolute blood flow velocity and blood flow in the human retina by dual-beam bidirectional Doppler fourier-domain optical coherence tomography.
    Werkmeister RM; Dragostinoff N; Palkovits S; Told R; Boltz A; Leitgeb RA; Gröschl M; Garhöfer G; Schmetterer L
    Invest Ophthalmol Vis Sci; 2012 Sep; 53(10):6062-71. PubMed ID: 22893675
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Swept-source based, single-shot, multi-detectable velocity range Doppler optical coherence tomography.
    Meemon P; Rolland JP
    Biomed Opt Express; 2010 Sep; 1(3):955-966. PubMed ID: 21258521
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.