These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 18007830)

  • 1. Multiple foci and a long filament observed with focused femtosecond pulse propagation in fused silica.
    Wu Z; Jiang H; Luo L; Guo H; Yang H; Gong Q
    Opt Lett; 2002 Mar; 27(6):448-50. PubMed ID: 18007830
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pulse duration dependent nonlinear propagation of a focused femtosecond laser pulse in fused silica.
    Sun Q; Asahi H; Nishijima Y; Murazawa N; Ueno K; Misawa H
    Opt Express; 2010 Nov; 18(24):24495-503. PubMed ID: 21164796
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatiotemporal moving focus of long femtosecond-laser filaments in air.
    Xi TT; Lu X; Zhang J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Nov; 78(5 Pt 2):055401. PubMed ID: 19113181
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-power regime of femtosecond-laser pulse propagation in silica: multiple-cone formation.
    Ishikawa K; Kumagai H; Midorikawa K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Nov; 66(5 Pt 2):056608. PubMed ID: 12513624
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [The study on supercontinuum generation of femtosecond pulse propagating in fused silica].
    Yang LL; Feng GY; Yang H; Zhou GR; Zhou H; Sui Z; Zhu QH
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Sep; 29(9):2489-93. PubMed ID: 19950659
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical simulation study on distinguishing nonlinear propagation regimes of femtosecond pulses in fused silica.
    Liu F; Xi T; Zhang L; Li D; Hao Z
    Sci Rep; 2024 Mar; 14(1):5824. PubMed ID: 38461366
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tight focusing of femtosecond radially polarized light pulses through a dielectric interface.
    Pu H; Shu J; Chen Z; Lin Z; Pu J
    J Opt Soc Am A Opt Image Sci Vis; 2015 Sep; 32(9):1717-22. PubMed ID: 26367441
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct observation of structure-assisted filament splitting during ultrafast multiple-pulse laser ablation.
    Wang F; Pan C; Sun J; Wang Q; Lu Y; Jiang L
    Opt Express; 2019 Apr; 27(7):10050-10057. PubMed ID: 31045151
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatiotemporal transformation of a focused femtosecond pulse in the absence of self-focusing.
    Liu Y; Jiang H; Gong Q
    Opt Lett; 2006 Mar; 31(6):832-4. PubMed ID: 16544639
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Femtosecond pulse propagation in nitrogen: numerical study of (3 + 1)-dimensional extended nonlinear Schrödinger equation with shock-term correction.
    Ando T; Fujimoto M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 2):026706. PubMed ID: 16196750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-frame-rate observation of single femtosecond laser pulse propagation in fused silica using an echelon and optical polarigraphy technique.
    Wang X; Yan L; Si J; Matsuo S; Xu H; Hou X
    Appl Opt; 2014 Dec; 53(36):8395-9. PubMed ID: 25608187
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tightly focused femtosecond laser pulse in air: from filamentation to breakdown.
    Liu XL; Lu X; Liu X; Xi TT; Liu F; Ma JL; Zhang J
    Opt Express; 2010 Dec; 18(25):26007-17. PubMed ID: 21164948
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transverse-mode dependence of femtosecond filamentation.
    Song Z; Zhang Z; Nakajima T
    Opt Express; 2009 Jul; 17(15):12217-29. PubMed ID: 19654624
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Femtosecond micromachining in transparent bulk materials using an anamorphic lens.
    Desautels GL; Brewer CD; Walker MA; Juhl SB; Finet MA; Powers PE
    Opt Express; 2007 Oct; 15(20):13139-48. PubMed ID: 19550582
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Femtosecond laser filament-fringes in fused silica.
    Hao Z; Stelmaszczyk K; Rohwetter P; Nakaema WM; Woeste L
    Opt Express; 2011 Apr; 19(8):7799-806. PubMed ID: 21503090
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct measurement of radial fluence distribution inside a femtosecond laser filament core.
    Guo H; Wang TJ; Zhang X; Liu C; Chen N; Liu Y; Sun H; Shen B; Jin Y; Leng Y; Li R
    Opt Express; 2020 May; 28(10):15529-15541. PubMed ID: 32403579
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling of femtosecond pulse propagation inside x-cut and z-cut MgO doped LiNbO3 anisotropic crystals.
    Arabanian AS; Massudi R
    Appl Opt; 2013 Jun; 52(18):4212-22. PubMed ID: 23842162
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Femtosecond self-guided atmospheric light strings.
    Moloney JV; Kolesik M; Mlejnek M; Wright EM
    Chaos; 2000 Sep; 10(3):559-569. PubMed ID: 12779406
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of microlenses with continuously variable numerical aperture through a temporally shaped femtosecond laser.
    Qin B; Li X; Yao Z; Huang J; Liu Y; Wang A; Gao S; Zhou S; Wang Z
    Opt Express; 2021 Feb; 29(3):4596-4606. PubMed ID: 33771033
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasma strings from ultraviolet laser filaments drive permanent structural modifications in fused silica.
    Papazoglou DG; Zergioti I; Tzortzakis S
    Opt Lett; 2007 Jul; 32(14):2055-7. PubMed ID: 17632641
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.