These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 18007835)

  • 1. Direct, noninvasive detection of photon density in turbid media.
    Lev A; Sfez BG
    Opt Lett; 2002 Apr; 27(7):473-5. PubMed ID: 18007835
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrasound tagged light imaging in turbid media in a reflectance geometry.
    Lev A; Kotler Z; Sfez BG
    Opt Lett; 2000 Mar; 25(6):378-80. PubMed ID: 18059885
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional localization and optical imaging of objects in turbid media with independent component analysis.
    Xu M; Alrubaiee M; Gayen SK; Alfano RR
    Appl Opt; 2005 Apr; 44(10):1889-97. PubMed ID: 15818863
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tagging photons with gold nanoparticles as localized absorbers in optical measurements in turbid media.
    Grabtchak S; Callaghan KB; Whelan WM
    Biomed Opt Express; 2013; 4(12):2989-3006. PubMed ID: 24409396
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photon migration in turbid media using a cumulant approximation to radiative transfer.
    Xu M; Cai W; Lax M; Alfano RR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jun; 65(6 Pt 2):066609. PubMed ID: 12188853
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solving analytically the simplified spherical harmonics equations in cylindrical turbid media.
    Edjlali E; Bérubé-Lauzière Y
    J Opt Soc Am A Opt Image Sci Vis; 2018 Sep; 35(9):1633-1644. PubMed ID: 30182999
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrasound-modulated optical tomography of absorbing objects buried in dense tissue-simulating turbid media.
    Wang L; Zhao X
    Appl Opt; 1997 Oct; 36(28):7277-82. PubMed ID: 18264237
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Frequency-domain theory of laser infrared photothermal radiometric detection of thermal waves generated by diffuse-photon-density wave fields in turbid media.
    Mandelis A; Feng C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Feb; 65(2 Pt 1):021909. PubMed ID: 11863565
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Massively parallel simulator of optical coherence tomography of inhomogeneous turbid media.
    Malektaji S; Lima IT; Escobar I MR; Sherif SS
    Comput Methods Programs Biomed; 2017 Oct; 150():97-105. PubMed ID: 28859833
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Backscattering differential ghost imaging in turbid media.
    Bina M; Magatti D; Molteni M; Gatti A; Lugiato LA; Ferri F
    Phys Rev Lett; 2013 Feb; 110(8):083901. PubMed ID: 23473147
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative generalized ratiometric fluorescence spectroscopy for turbid media based on probe encapsulated by biologically localized embedding.
    Yan XF; Chen ZP; Cui YY; Hu YL; Yu RQ
    Anal Chim Acta; 2016 May; 921():38-45. PubMed ID: 27126788
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative fluorescence spectroscopy in turbid media: a practical solution to the problem of scattering and absorption.
    Chen Y; Chen ZP; Yang J; Jin JW; Zhang J; Yu RQ
    Anal Chem; 2013 Feb; 85(4):2015-20. PubMed ID: 23327605
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling focusing Gaussian beams in a turbid medium with Monte Carlo simulations.
    Hokr BH; Bixler JN; Elpers G; Zollars B; Thomas RJ; Yakovlev VV; Scully MO
    Opt Express; 2015 Apr; 23(7):8699-705. PubMed ID: 25968708
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional tumor localization in thick tissue with the use of diffuse photon-density waves.
    Matson CL; Clark N; McMackin L; Fender JS
    Appl Opt; 1997 Jan; 36(1):214-20. PubMed ID: 18250661
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An indeterministic Monte Carlo technique for fast time of flight photon transport through optically thick turbid media.
    Behin-Ain S; van Doorn T; Patterson JR
    Med Phys; 2002 Feb; 29(2):125-31. PubMed ID: 11865984
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Excitation-and-collection geometry insensitive fluorescence imaging of tissue-simulating turbid media.
    Qu JY; Huang Z; Hua J
    Appl Opt; 2000 Jul; 39(19):3344-56. PubMed ID: 18349903
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of ultrasound-modulated photons in diffuse media using the photorefractive effect.
    Murray TW; Sui L; Maguluri G; Roy RA; Nieva A; Blonigen F; DiMarzio CA
    Opt Lett; 2004 Nov; 29(21):2509-11. PubMed ID: 15584277
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diffuse optical 3D-slice imaging of bounded turbid media using a new integro-differential equation.
    Pattanayak D; Yodh A
    Opt Express; 1999 Apr; 4(8):231-40. PubMed ID: 19396280
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of a diffusive cloak via second-order statistics.
    Koirala M; Yamilov A
    Opt Lett; 2016 Aug; 41(16):3860-3. PubMed ID: 27519108
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measuring the optical parameters of weakly absorbing, highly turbid suspensions by a new technique: photoacoustic detection of scattered light.
    Zhao Z; Myllylä R
    Appl Opt; 2005 Dec; 44(36):7845-52. PubMed ID: 16381536
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.