These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 18007918)

  • 61. Axial optical trapping forces on two particles trapped simultaneously by optical tweezers.
    Xu S; Li Y; Lou L
    Appl Opt; 2005 May; 44(13):2667-72. PubMed ID: 15881076
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Rotation, oscillation and hydrodynamic synchronization of optically trapped oblate spheroidal microparticles.
    Arzola AV; Jákl P; Chvátal L; Zemánek P
    Opt Express; 2014 Jun; 22(13):16207-21. PubMed ID: 24977872
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Active, controlled circular, and spin-rotational movement of optically trapped airborne micro-particles.
    Arnold JA; Kalume A; Wang C; Videen G; Pan YL
    Opt Lett; 2021 Nov; 46(21):5332-5335. PubMed ID: 34724468
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Quantifying Force and Viscoelasticity Inside Living Cells Using an Active-Passive Calibrated Optical Trap.
    Ritter CM; Mas J; Oddershede L; Berg-Sørensen K
    Methods Mol Biol; 2017; 1486():513-536. PubMed ID: 27844442
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Simultaneous calibration of optical tweezers spring constant and position detector response.
    Le Gall A; Perronet K; Dulin D; Villing A; Bouyer P; Visscher K; Westbrook N
    Opt Express; 2010 Dec; 18(25):26469-74. PubMed ID: 21164997
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Rotational Doppler-effect due to selective excitation of vector-vortex field in optical fiber.
    Inavalli VV; Viswanathan NK
    Opt Express; 2011 Jan; 19(2):448-57. PubMed ID: 21263584
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Full 3D translational and rotational optical control of multiple rod-shaped bacteria.
    Hörner F; Woerdemann M; Müller S; Maier B; Denz C
    J Biophotonics; 2010 Jul; 3(7):468-75. PubMed ID: 20455214
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Imaging heterogeneous nanostructures with a plasmonic resonant ridge aperture.
    Lee T; Lee E; Oh S; Hahn JW
    Nanotechnology; 2013 Apr; 24(14):145502. PubMed ID: 23511230
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Optical particle manipulation using an LC device with eight-divided circularly hole-patterned electrodes.
    Kawamura M; Ye M; Sato S
    Opt Express; 2008 Jul; 16(14):10059-65. PubMed ID: 18607413
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Self-propelled round-trip motion of Janus particles in static line optical tweezers.
    Liu J; Guo HL; Li ZY
    Nanoscale; 2016 Dec; 8(47):19894-19900. PubMed ID: 27878196
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam.
    Garcés-Chávez V; McGloin D; Melville H; Sibbett W; Dholakia K
    Nature; 2002 Sep; 419(6903):145-7. PubMed ID: 12226659
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Holographic optical tweezers for object manipulations at an air-liquid surface.
    Jesacher A; Fürhapter S; Maurer C; Bernet S; Ritsch-Marte M
    Opt Express; 2006 Jun; 14(13):6342-52. PubMed ID: 19516810
    [TBL] [Abstract][Full Text] [Related]  

  • 73. One-dimensional jumping optical tweezers for optical stretching of bi-concave human red blood cells.
    Liao GB; Bareil PB; Sheng Y; Chiou A
    Opt Express; 2008 Feb; 16(3):1996-2004. PubMed ID: 18542279
    [TBL] [Abstract][Full Text] [Related]  

  • 74. An orthogonal return method for linearly polarized beam based on the Faraday effect and its application in interferometer.
    Chen B; Zhang E; Yan L; Liu Y
    Rev Sci Instrum; 2014 Oct; 85(10):105103. PubMed ID: 25362452
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Optical micromanipulation methods for controlled rotation, transportation, and microinjection of biological objects.
    Mohanty SK; Gupta PK
    Methods Cell Biol; 2007; 82():563-99. PubMed ID: 17586272
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Accounting for polarization in the calibration of a donut beam axial optical tweezers.
    Pollari R; Milstein JN
    PLoS One; 2018; 13(2):e0193402. PubMed ID: 29474494
    [TBL] [Abstract][Full Text] [Related]  

  • 77. A method to track rotational motion for use in single-molecule biophysics.
    Lipfert J; Kerssemakers JJ; Rojer M; Dekker NH
    Rev Sci Instrum; 2011 Oct; 82(10):103707. PubMed ID: 22047303
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Invited article: a review of haptic optical tweezers for an interactive microworld exploration.
    Pacoret C; Régnier S
    Rev Sci Instrum; 2013 Aug; 84(8):081301. PubMed ID: 24007046
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Towards total photonic control of complex-shaped colloids by vortex beams.
    Lapointe CP; Mason TG; Smalyukh II
    Opt Express; 2011 Sep; 19(19):18182-9. PubMed ID: 21935184
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Position clamping in a holographic counterpropagating optical trap.
    Bowman R; Jesacher A; Thalhammer G; Gibson G; Ritsch-Marte M; Padgett M
    Opt Express; 2011 May; 19(10):9908-14. PubMed ID: 21643247
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.