BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 18008263)

  • 1. [Ultrastructural features of the synaptic plasticity in peritumoral cerebral oedema in humans].
    Arismendi-Morillo GJ; Castejón OJ; Castellano-Ramírez A
    Rev Neurol; 2007 Nov 16-30; 45(10):587-93. PubMed ID: 18008263
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synaptic plasticity in the oedematous human cerebral cortex.
    Castejón OJ
    J Submicrosc Cytol Pathol; 2003 Apr; 35(2):177-97. PubMed ID: 12974331
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transmission electron microscopy of cortical dendritic spines in the human oedematous cerebral cortex.
    Castejon OJ; Castellano A; Arismendi G
    J Submicrosc Cytol Pathol; 2004 Apr; 36(2):181-91. PubMed ID: 15554504
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrastructural pathology of neuronal membranes in the oedematous human cerebral cortex.
    Castejon OJ
    J Submicrosc Cytol Pathol; 2004 Apr; 36(2):167-79. PubMed ID: 15554503
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Features of the ultrastructural organization of the neuropile of the 1st layer of the cerebral cortex in the cat].
    Lazriev IL; Kiknadze GI
    Neirofiziologiia; 1983; 15(1):50-5. PubMed ID: 6835428
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synaptic degenerative changes in human traumatic brain edema. An electron microscopic study of cerebral cortical biopsies.
    Castejòn OJ; Valero C; Dìaz M
    J Neurosurg Sci; 1995 Mar; 39(1):47-65. PubMed ID: 8568555
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural patterns of injured mitochondria in human oedematous cerebral cortex.
    Castejón OJ; de Castejón HV
    Brain Inj; 2004 Nov; 18(11):1107-26. PubMed ID: 15545208
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glycogen-rich and glycogen-depleted astrocytes in the oedematous human cerebral cortex associated with brain trauma, tumours and congenital malformations: an electron microscopy study.
    Castejon OJ; Diaz M; Castejon HV; Castellano A
    Brain Inj; 2002 Feb; 16(2):109-32. PubMed ID: 11839107
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A light and electron microscopic study of oedematous human cerebral cortex in two patients with post-traumatic seizures.
    Castejón OJ; Castejón HV; Zavala M; Sánchez ME; Díaz M
    Brain Inj; 2002 Apr; 16(4):331-46. PubMed ID: 11953004
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spike waves and synaptic ultrastructure in human epileptic brains.
    Li G; Tan Y; Wang Y; Bai Q; Xu Y; Sun Y; Qu B
    Chin Med J (Engl); 1996 May; 109(5):389-92. PubMed ID: 9208498
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in number of synapses and mitochondria in presynaptic terminals in the dentate gyrus following cerebral ischemia and rehabilitation training.
    Briones TL; Suh E; Jozsa L; Rogozinska M; Woods J; Wadowska M
    Brain Res; 2005 Feb; 1033(1):51-7. PubMed ID: 15680339
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lysosome abnormalities and lipofucsin content of nerve cells of oedematous human cerebral cortex.
    Castejón OJ
    J Submicrosc Cytol Pathol; 2004; 36(3-4):263-71. PubMed ID: 15906601
    [TBL] [Abstract][Full Text] [Related]  

  • 13. LTD induction causes morphological changes of presynaptic boutons and reduces their contacts with spines.
    Becker N; Wierenga CJ; Fonseca R; Bonhoeffer T; Nägerl UV
    Neuron; 2008 Nov; 60(4):590-7. PubMed ID: 19038217
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nerve cell nuclear and nucleolar abnormalities in the human oedematous cerebral cortex. An electron microscopic study using cortical biopsies.
    Castejón OJ; Arismendi GJ
    J Submicrosc Cytol Pathol; 2004; 36(3-4):273-83. PubMed ID: 15906602
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Ultrastructural variations of synapses in the normal human cerebral cortex].
    Tusques J; George Y; Roch M
    Bull Assoc Anat (Nancy); 1976 Mar; 60(168):231-41. PubMed ID: 1016748
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reversible reduction in dendritic spines in CA1 of rat and ground squirrel subjected to hypothermia-normothermia in vivo: A three-dimensional electron microscope study.
    Popov VI; Medvedev NI; Patrushev IV; Ignat'ev DA; Morenkov ED; Stewart MG
    Neuroscience; 2007 Nov; 149(3):549-60. PubMed ID: 17919827
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synaptic potentiation induces increased glial coverage of excitatory synapses in CA1 hippocampus.
    Lushnikova I; Skibo G; Muller D; Nikonenko I
    Hippocampus; 2009 Aug; 19(8):753-62. PubMed ID: 19156853
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vomeronasal neurons promote synaptic formation on dendritic spines but not dendritic shafts in primary culture of accessory olfactory bulb neurons.
    Moriya-Ito K; Endoh K; Ichikawa M
    Neurosci Lett; 2009 Feb; 451(1):20-4. PubMed ID: 19103255
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cholinergic synapses in human cerebral cortex: an ultrastructural study in serial sections.
    Smiley JF; Morrell F; Mesulam MM
    Exp Neurol; 1997 Apr; 144(2):361-8. PubMed ID: 9168836
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The ultrastructural organization of the patch matrix compartments in the human striatum.
    Roberts RC; Knickman JK
    J Comp Neurol; 2002 Oct; 452(2):128-38. PubMed ID: 12271487
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.