BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 18008381)

  • 1. Sequence shuffle controls morphological consequences in a self-assembling tetrapeptide.
    Joshi KB; Verma S
    J Pept Sci; 2008 Feb; 14(2):118-26. PubMed ID: 18008381
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-assembly of multidomain peptides: balancing molecular frustration controls conformation and nanostructure.
    Dong H; Paramonov SE; Aulisa L; Bakota EL; Hartgerink JD
    J Am Chem Soc; 2007 Oct; 129(41):12468-72. PubMed ID: 17894489
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding self-assembled amphiphilic peptide supramolecular structures from primary structure helix propensity.
    Baumann MK; Textor M; Reimhult E
    Langmuir; 2008 Aug; 24(15):7645-7. PubMed ID: 18597507
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of the sequence and size of non-polar residues on self-assembly of amphiphilic peptides.
    Wang K; Keasling JD; Muller SJ
    Int J Biol Macromol; 2005 Sep; 36(4):232-40. PubMed ID: 16055181
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tetrapeptide-based hydrogels: for encapsulation and slow release of an anticancer drug at physiological pH.
    Naskar J; Palui G; Banerjee A
    J Phys Chem B; 2009 Sep; 113(35):11787-92. PubMed ID: 19708711
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis and self-assembly of a neoglycopeptide: morphological studies and ultrasound-mediated DNA encapsulation.
    Gour N; Mondal S; Verma S
    J Pept Sci; 2011 Feb; 17(2):148-53. PubMed ID: 21234987
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanofibrous scaffold from self-assembly of beta-sheet peptides containing phenylalanine for controlled release.
    Zhao Y; Tanaka M; Kinoshita T; Higuchi M; Tan T
    J Control Release; 2010 Mar; 142(3):354-60. PubMed ID: 19932721
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Primary amphipathic cell-penetrating peptides: structural requirements and interactions with model membranes.
    Deshayes S; Plénat T; Aldrian-Herrada G; Divita G; Le Grimellec C; Heitz F
    Biochemistry; 2004 Jun; 43(24):7698-706. PubMed ID: 15196012
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-assembly of peptide-amphiphile nanofibers: the roles of hydrogen bonding and amphiphilic packing.
    Paramonov SE; Jun HW; Hartgerink JD
    J Am Chem Soc; 2006 Jun; 128(22):7291-8. PubMed ID: 16734483
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controlled self-assembly of amphiphilic oligopeptides into shape-specific nanoarchitectures.
    Koga T; Higuchi M; Kinoshita T; Higashi N
    Chemistry; 2006 Feb; 12(5):1360-7. PubMed ID: 16163755
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploiting enzymatic (reversed) hydrolysis in directed self-assembly of peptide nanostructures.
    Das AK; Collins R; Ulijn RV
    Small; 2008 Feb; 4(2):279-87. PubMed ID: 18214877
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-assembled peptide-based hydrogels as scaffolds for anchorage-dependent cells.
    Zhou M; Smith AM; Das AK; Hodson NW; Collins RF; Ulijn RV; Gough JE
    Biomaterials; 2009 May; 30(13):2523-30. PubMed ID: 19201459
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enzymatic modification of self-assembled peptide structures with tissue transglutaminase.
    Collier JH; Messersmith PB
    Bioconjug Chem; 2003; 14(4):748-55. PubMed ID: 12862427
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-assembling peptide inspired by a barnacle underwater adhesive protein.
    Nakano M; Shen JR; Kamino K
    Biomacromolecules; 2007 Jun; 8(6):1830-5. PubMed ID: 17518440
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-assembling organic nanotubes based on a cyclic peptide architecture.
    Ghadiri MR; Granja JR; Milligan RA; McRee DE; Khazanovich N
    Nature; 1993 Nov; 366(6453):324-7. PubMed ID: 8247126
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Organic solvent mediated self-association of an amyloid forming peptide from beta2-microglobulin: an atomic force microscopy study.
    Chaudhary N; Singh S; Nagaraj R
    Biopolymers; 2008; 90(6):783-91. PubMed ID: 18798577
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of diacetylene-containing peptide building blocks and amphiphiles, their self-assembly and topochemical polymerization in organic solvents.
    Jahnke E; Weiss J; Neuhaus S; Hoheisel TN; Frauenrath H
    Chemistry; 2009; 15(2):388-404. PubMed ID: 19053106
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self assembly of a model amphiphilic phenylalanine peptide/polyethylene glycol block copolymer in aqueous solution.
    Castelletto V; Hamley IW
    Biophys Chem; 2009 May; 141(2-3):169-74. PubMed ID: 19232813
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of and structural studies on repeating sequences of abductin.
    Bochicchio B; Jimenez-Oronoz F; Pepe A; Blanco M; Sandberg LB; Tamburro AM
    Macromol Biosci; 2005 Jun; 5(6):502-11. PubMed ID: 15948227
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rational design of a reversible pH-responsive switch for peptide self-assembly.
    Zimenkov Y; Dublin SN; Ni R; Tu RS; Breedveld V; Apkarian RP; Conticello VP
    J Am Chem Soc; 2006 May; 128(21):6770-1. PubMed ID: 16719440
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.