BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 1801847)

  • 21. Chemosensory effects during acute exposure to N-methyl-2-pyrrolidone (NMP).
    van Thriel C; Blaszkewicz M; Schäper M; Juran SA; Kleinbeck S; Kiesswetter E; Wrbitzky R; Stache J; Golka K; Bader M
    Toxicol Lett; 2007 Dec; 175(1-3):44-56. PubMed ID: 17981408
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The role of odor and irritation, as well as risk perception, in the setting of occupational exposure limits.
    Paustenbach DJ; Gaffney SH
    Int Arch Occup Environ Health; 2006 Apr; 79(4):339-42. PubMed ID: 16049719
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pulmonary and sensory irritation of diphenylmethane-4,4'- and dicyclohexylmethane-4,4'-diisocyanate.
    Weyel DA; Schaffer RB
    Toxicol Appl Pharmacol; 1985 Mar; 77(3):427-33. PubMed ID: 3975910
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Setting an indoor air exposure limit for formaldehyde: factors of concern.
    Arts JH; Muijser H; Kuper CF; Woutersen RA
    Regul Toxicol Pharmacol; 2008 Nov; 52(2):189-94. PubMed ID: 18786592
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sensory irritation tolerance and cross-tolerance in F-344 rats exposed to chlorine or formaldehyde gas.
    Chang JC; Barrow CS
    Toxicol Appl Pharmacol; 1984 Nov; 76(2):319-27. PubMed ID: 6495337
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evaluating the human response to sensory irritation: implications for setting occupational exposure limits.
    Dalton P
    AIHAJ; 2001; 62(6):723-9. PubMed ID: 11767938
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Respiratory peripheral sensory irritation and hypersensitivity studies with glutaraldehyde vapor.
    Werley MS; Burleigh-Flayer HD; Ballantyne B
    Toxicol Ind Health; 1995; 11(5):489-501. PubMed ID: 8677514
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Respiratory tract lesions induced by sensory irritants at the RD50 concentration.
    Buckley LA; Jiang XZ; James RA; Morgan KT; Barrow CS
    Toxicol Appl Pharmacol; 1984 Jul; 74(3):417-29. PubMed ID: 6740688
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nasal irritation and pulmonary toxicity of aliphatic amines in mice.
    Gagnaire F; Azim S; Bonnet P; Simon P; Guenier JP; de Ceaurriz J
    J Appl Toxicol; 1989 Oct; 9(5):301-4. PubMed ID: 2592729
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evaluation and application of the RD50 for determining acceptable exposure levels of airborne sensory irritants for the general public.
    Kuwabara Y; Alexeeff GV; Broadwin R; Salmon AG
    Environ Health Perspect; 2007 Nov; 115(11):1609-16. PubMed ID: 18007993
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The involvement of TRP channels in sensory irritation: a mechanistic approach toward a better understanding of the biological effects of local irritants.
    Lehmann R; Schöbel N; Hatt H; van Thriel C
    Arch Toxicol; 2016 Jun; 90(6):1399-413. PubMed ID: 27037703
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Setting occupational exposure limits in humans: contributions from the field of experimental psychology.
    Smeets MA; Kroeze JH; Dalton PH
    Int Arch Occup Environ Health; 2006 Apr; 79(4):299-307. PubMed ID: 16237552
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evaluation of the acute respiratory effects of aerosolized machining fluids in mice.
    Schaper M; Detwiler K
    Fundam Appl Toxicol; 1991 Feb; 16(2):309-19. PubMed ID: 2055361
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sensory and pulmonary irritation of aliphatic amines in mice: a structure-activity relationship study.
    Gagnaire F; Azim S; Simon P; Cossec B; Bonnet P; De Ceaurriz J
    J Appl Toxicol; 1993; 13(2):129-35. PubMed ID: 8486911
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sensory irritation effects of n-propanol and ethylbenzene after pretreatment with capsaicin or indomethacin.
    Hansen LF; Nielsen GD
    Pharmacol Toxicol; 1994; 75(3-4):154-61. PubMed ID: 7800656
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An analysis of nasal irritation thresholds using a new solvation equation.
    Abraham MH; Andonian-Haftvan J; Cometto-Muñiz JE; Cain WS
    Fundam Appl Toxicol; 1996 May; 31(1):71-6. PubMed ID: 8998955
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A proposal for calculating occupational exposure limits for volatile organic compounds acting as sensory irritants on the basis of their physicochemical properties.
    Jakubowski M; Czerczak S
    J Occup Environ Hyg; 2010 Jul; 7(7):429-34. PubMed ID: 20473819
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evaluation of the toxicity data for peracetic acid in deriving occupational exposure limits: a minireview.
    Pechacek N; Osorio M; Caudill J; Peterson B
    Toxicol Lett; 2015 Feb; 233(1):45-57. PubMed ID: 25542141
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Irritation of the upper airways from mixtures of cumene and n-propanol. Mechanisms and their consequences for setting industrial exposure limits.
    Nielsen GD; Kristiansen U; Hansen L; Alarie Y
    Arch Toxicol; 1988; 62(2-3):209-15. PubMed ID: 3196155
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Trigeminally-mediated health effects of air pollutants: sources of inter-individual variability.
    Shusterman D
    Hum Exp Toxicol; 2007 Mar; 26(3):149-57. PubMed ID: 17439917
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.