These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 18018690)

  • 1. Beyond parameter estimation: extending biomechanical modeling by the explicit exploration of model topology.
    Valero-Cuevas FJ; Anand VV; Saxena A; Lipson H
    IEEE Trans Biomed Eng; 2007 Nov; 54(11):1951-64. PubMed ID: 18018690
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel theoretical framework for the dynamic stability analysis, movement control, and trajectory generation in a multisegment biomechanical model.
    Iqbal K; Roy A
    J Biomech Eng; 2009 Jan; 131(1):011002. PubMed ID: 19045918
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Virtual musculo-skeletal model for the biomechanical analysis of the upper limb.
    Pennestrì E; Stefanelli R; Valentini PP; Vita L
    J Biomech; 2007; 40(6):1350-61. PubMed ID: 16824531
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulated parallel annealing within a neighborhood for optimization of biomechanical systems.
    Higginson JS; Neptune RR; Anderson FC
    J Biomech; 2005 Sep; 38(9):1938-42. PubMed ID: 16023483
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The tendon network of the fingers performs anatomical computation at a macroscopic scale.
    Valero-Cuevas FJ; Yi JW; Brown D; McNamara RV; Paul C; Lipson H
    IEEE Trans Biomed Eng; 2007 Jun; 54(6 Pt 2):1161-6. PubMed ID: 17549909
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tracking the motion of hidden segments using kinematic constraints and Kalman filtering.
    Halvorsen K; Johnston C; Back W; Stokes V; Lanshammar H
    J Biomech Eng; 2008 Feb; 130(1):011012. PubMed ID: 18298188
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel two-stage framework for musculoskeletal dynamic modeling: an application to multifingered hand movement.
    Li K; Zhang X
    IEEE Trans Biomed Eng; 2009 Jul; 56(7):1949-57. PubMed ID: 19272972
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational modeling to predict mechanical function of joints: application to the lower leg with simulation of two cadaver studies.
    Liacouras PC; Wayne JS
    J Biomech Eng; 2007 Dec; 129(6):811-17. PubMed ID: 18067384
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Locomotion with flexible propulsors: II. Computational modeling of pectoral fin swimming in sunfish.
    Mittal R; Dong H; Bozkurttas M; Lauder G; Madden P
    Bioinspir Biomim; 2006 Dec; 1(4):S35-41. PubMed ID: 17671316
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The problem of measurement indeterminacy in complex neurobiological movement systems.
    Glazier PS; Davids K
    J Biomech; 2009 Dec; 42(16):2694-6. PubMed ID: 19748625
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a finger biomechanical model and its considerations.
    Fok KS; Chou SM
    J Biomech; 2010 Mar; 43(4):701-13. PubMed ID: 19962148
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computer modeling and simulation of human movement. Applications in sport and rehabilitation.
    Neptune RR
    Phys Med Rehabil Clin N Am; 2000 May; 11(2):417-34, viii. PubMed ID: 10810769
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational modeling of multicellular constructs with the material point method.
    Guilkey JE; Hoying JB; Weiss JA
    J Biomech; 2006; 39(11):2074-86. PubMed ID: 16095601
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational motor control: redundancy and invariance.
    Guigon E; Baraduc P; Desmurget M
    J Neurophysiol; 2007 Jan; 97(1):331-47. PubMed ID: 17005621
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of isovelocity extension of activated muscle: a Hill-type model for eccentric contractions and a method for parameter determination.
    Till O; Siebert T; Rode C; Blickhan R
    J Theor Biol; 2008 Nov; 255(2):176-87. PubMed ID: 18771670
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of computer simulation free-energy methods to compute the free energy of micellization as a function of micelle composition. 2. Implementation.
    Stephenson BC; Stafford KA; Beers KJ; Blankschtein D
    J Phys Chem B; 2008 Feb; 112(6):1641-56. PubMed ID: 18198857
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonlinearities make a difference: comparison of two common Hill-type models with real muscle.
    Siebert T; Rode C; Herzog W; Till O; Blickhan R
    Biol Cybern; 2008 Feb; 98(2):133-43. PubMed ID: 18049823
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomechanical model for the determination of the forces acting on the finger pulley system.
    Roloff I; Schöffl VR; Vigouroux L; Quaine F
    J Biomech; 2006; 39(5):915-23. PubMed ID: 16488229
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving net joint torque calculations through a two-step optimization method for estimating body segment parameters.
    Riemer R; Hsiao-Wecksler ET
    J Biomech Eng; 2009 Jan; 131(1):011007. PubMed ID: 19045923
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling cellular metabolism and energetics in skeletal muscle: large-scale parameter estimation and sensitivity analysis.
    Dash RK; Li Y; Kim J; Saidel GM; Cabrera ME
    IEEE Trans Biomed Eng; 2008 Apr; 55(4):1298-318. PubMed ID: 18390321
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.