BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 18019138)

  • 1. A study on gold nanoparticle synthesis using oleylamine as both reducing agent and protecting ligand.
    Liu X; Atwater M; Wang J; Dai Q; Zou J; Brennan JP; Huo Q
    J Nanosci Nanotechnol; 2007 Sep; 7(9):3126-33. PubMed ID: 18019138
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Facile synthesis of gold nanoparticles with narrow size distribution by using AuCl or AuBr as the precursor.
    Lu X; Tuan HY; Korgel BA; Xia Y
    Chemistry; 2008; 14(5):1584-91. PubMed ID: 18058964
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extinction coefficient of gold nanoparticles with different sizes and different capping ligands.
    Liu X; Atwater M; Wang J; Huo Q
    Colloids Surf B Biointerfaces; 2007 Jul; 58(1):3-7. PubMed ID: 16997536
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Facile solvothermal preparation of monodisperse gold nanoparticles and their engineered assembly of ferritin-gold nanoclusters.
    Choi J; Park S; Stojanović Z; Han HS; Lee J; Seok HK; Uskoković D; Lee KH
    Langmuir; 2013 Dec; 29(50):15698-703. PubMed ID: 24283573
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous synthesis and assembly of gold nanoparticles in cuttlebone-derived organic matrix: a "green" pathway for gold nanocomposite.
    Jia X; Qian W
    J Nanosci Nanotechnol; 2008 Sep; 8(9):4370-6. PubMed ID: 19049027
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spectroscopic and microscopic investigation of gold nanoparticle formation: ligand and temperature effects on rate and particle size.
    Sardar R; Shumaker-Parry JS
    J Am Chem Soc; 2011 Jun; 133(21):8179-90. PubMed ID: 21548572
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Seedless synthesis of octahedral gold nanoparticles in condensed surfactant phase.
    Cao C; Park S; Sim SJ
    J Colloid Interface Sci; 2008 Jun; 322(1):152-7. PubMed ID: 18395217
    [TBL] [Abstract][Full Text] [Related]  

  • 8. L-Leucine for gold nanoparticles synthesis and their cytotoxic effects evaluation.
    Berghian-Grosan C; Olenic L; Katona G; Perde-Schrepler M; Vulcu A
    Amino Acids; 2014 Nov; 46(11):2545-52. PubMed ID: 25092048
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbohydrate-directed synthesis of silver and gold nanoparticles: effect of the structure of carbohydrates and reducing agents on the size and morphology of the composites.
    Shervani Z; Yamamoto Y
    Carbohydr Res; 2011 Apr; 346(5):651-8. PubMed ID: 21349499
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phytolatex synthesized gold nanoparticles as novel agent to enhance sun protection factor of commercial sunscreens.
    Borase HP; Patil CD; Salunkhe RB; Suryawanshi RK; Salunke BK; Patil SV
    Int J Cosmet Sci; 2014 Dec; 36(6):571-8. PubMed ID: 25124731
    [TBL] [Abstract][Full Text] [Related]  

  • 11. One-pot aqueous phase growth of biocompatible 15-130 nm gold nanoparticles stabilized with bidentate PEG.
    Oh E; Susumu K; Jain V; Kim M; Huston A
    J Colloid Interface Sci; 2012 Jun; 376(1):107-11. PubMed ID: 22480398
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel synthesis of silver nanoparticles using 2,3,5,6-tetrakis-(morpholinomethyl) hydroquinone as reducing agent.
    Manivel P; Balamurugan A; Ponpandian N; Mangalaraj D; Viswanathan C
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Sep; 95():305-9. PubMed ID: 22542686
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Green synthesis of silver and gold nanoparticles employing levan, a biopolymer from Acetobacter xylinum NCIM 2526, as a reducing agent and capping agent.
    Ahmed KB; Kalla D; Uppuluri KB; Anbazhagan V
    Carbohydr Polym; 2014 Nov; 112():539-45. PubMed ID: 25129779
    [TBL] [Abstract][Full Text] [Related]  

  • 14. One-pot synthesis of triangular gold nanoplates allowing broad and fine tuning of edge length.
    Miranda A; Malheiro E; Skiba E; Quaresma P; Carvalho PA; Eaton P; de Castro B; Shelnutt JA; Pereira E
    Nanoscale; 2010 Oct; 2(10):2209-16. PubMed ID: 20714654
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Eco-friendly microwave-assisted green and rapid synthesis of well-stabilized gold and core-shell silver-gold nanoparticles.
    El-Naggar ME; Shaheen TI; Fouda MM; Hebeish AA
    Carbohydr Polym; 2016 Jan; 136():1128-36. PubMed ID: 26572455
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of gold nanorods in organic media.
    Chandran SP; Pasricha R; Bhatta UM; Satyam PV; Sastry M
    J Nanosci Nanotechnol; 2007 Aug; 7(8):2808-17. PubMed ID: 17685301
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monodisperse sub-10 nm gold nanoparticles by reversing the order of addition in Turkevich method--the role of chloroauric acid.
    Sivaraman SK; Kumar S; Santhanam V
    J Colloid Interface Sci; 2011 Sep; 361(2):543-7. PubMed ID: 21719021
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intermediate-dominated controllable biomimetic synthesis of gold nanoparticles in a quasi-biological system.
    Cui R; Zhang MX; Tian ZQ; Zhang ZL; Pang DW
    Nanoscale; 2010 Oct; 2(10):2120-5. PubMed ID: 20820640
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A multidentate peptide for stabilization and facile bioconjugation of gold nanoparticles.
    Krpetić Z; Nativo P; Porta F; Brust M
    Bioconjug Chem; 2009 Mar; 20(3):619-24. PubMed ID: 19220052
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biological synthesis of silver and gold nanoparticles using apiin as reducing agent.
    Kasthuri J; Veerapandian S; Rajendiran N
    Colloids Surf B Biointerfaces; 2009 Jan; 68(1):55-60. PubMed ID: 18977643
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.