These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 18019169)

  • 1. Carbon nanotubes/TiO2 nanotubes hybrid supercapacitor.
    Wang Q; Wen Z; Li J
    J Nanosci Nanotechnol; 2007 Sep; 7(9):3328-31. PubMed ID: 18019169
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Growth of carbon nanotubes on nanoporous titania templates.
    Misra M; Paramguru K; Mohapatra SK
    J Nanosci Nanotechnol; 2007 Aug; 7(8):2640-6. PubMed ID: 17685278
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrochemical organization of monolayer protected gold nanoclusters on single-walled carbon nanotubes: significantly enhanced double layer capacitance.
    Mahima S; Chaki NK; Sharma J; Kakade BA; Pasricha R; Rao AM; Vijayamohanan K
    J Nanosci Nanotechnol; 2006 May; 6(5):1387-91. PubMed ID: 16792369
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Raman and electrochemical impedance studies of sol-gel titanium oxide and single walled carbon nanotubes composite films.
    Rincón ME; Trujillo-Camacho ME; Miranda-Hernández M; Cuentas-Gallegos AK; Orozco G
    J Nanosci Nanotechnol; 2007; 7(4-5):1596-603. PubMed ID: 17450931
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrochemical Performance of Nitrogen-Doped TiO
    Appadurai T; Subramaniyam C; Kuppusamy R; Karazhanov S; Subramanian B
    Molecules; 2019 Aug; 24(16):. PubMed ID: 31416287
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cutting single-walled carbon nanotubes with an electron beam: evidence for atom migration inside nanotubes.
    Banhart F; Li J; Terrones M
    Small; 2005 Oct; 1(10):953-6. PubMed ID: 17193375
    [No Abstract]   [Full Text] [Related]  

  • 7. Extracting the full potential of single-walled carbon nanotubes as durable supercapacitor electrodes operable at 4 V with high power and energy density.
    Izadi-Najafabadi A; Yasuda S; Kobashi K; Yamada T; Futaba DN; Hatori H; Yumura M; Iijima S; Hata K
    Adv Mater; 2010 Sep; 22(35):E235-41. PubMed ID: 20564700
    [No Abstract]   [Full Text] [Related]  

  • 8. Carbon materials for supercapacitor application.
    Frackowiak E
    Phys Chem Chem Phys; 2007 Apr; 9(15):1774-85. PubMed ID: 17415488
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hierarchically porous carbon with manganese oxides as highly efficient electrode for asymmetric supercapacitors.
    Chou TC; Doong RA; Hu CC; Zhang B; Su DS
    ChemSusChem; 2014 Mar; 7(3):841-7. PubMed ID: 24504702
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of carbon nanotubes by arc discharge in open air.
    Paladugu MC; Maneesh K; Nair PK; Haridoss P
    J Nanosci Nanotechnol; 2005 May; 5(5):747-52. PubMed ID: 16010933
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transfer printing of submicrometer patterns of aligned carbon nanotubes onto functionalized electrodes.
    Li S; Yan Y; Liu N; Chan-Park MB; Zhang Q
    Small; 2007 Apr; 3(4):616-21. PubMed ID: 17294494
    [No Abstract]   [Full Text] [Related]  

  • 12. Chemically modified multiwalled carbon nanotubes as an additive for supercapacitors.
    Kim YJ; Kim YA; Chino T; Suezaki H; Endo M; Dresselhaus MS
    Small; 2006 Mar; 2(3):339-45. PubMed ID: 17193046
    [No Abstract]   [Full Text] [Related]  

  • 13. Carbon nanotube fiber microelectrodes: design, characterization, and optimization.
    Viry L; Derré A; Garrigue P; Sojic N; Poulin P; Kuhn A
    J Nanosci Nanotechnol; 2007 Oct; 7(10):3373-7. PubMed ID: 18330143
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of carbon nanotubes.
    Awasthi K; Srivastava A; Srivastava ON
    J Nanosci Nanotechnol; 2005 Oct; 5(10):1616-36. PubMed ID: 16245519
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CoMnO
    Cho YH; Seong JG; Noh JH; Kim DY; Chung YS; Ko TH; Kim BS
    Molecules; 2020 Dec; 25(24):. PubMed ID: 33322446
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hybrid carbon nanotube/nanodiamond structures as electron emitters for cold cathodes.
    Fiori A; Orlanducci S; Sessa V; Tamburri E; Toschi F; Terranova ML; Ciorba A; Rossi M; Lucci M; Barnard AS
    J Nanosci Nanotechnol; 2008 Apr; 8(4):1989-93. PubMed ID: 18572603
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparative study on the lithium-ion storage performances of carbon nanotubes and tube-in-tube carbon nanotubes.
    Xu YJ; Liu X; Cui G; Zhu B; Weinberg G; Schlögl R; Maier J; Su DS
    ChemSusChem; 2010 Mar; 3(3):343-9. PubMed ID: 20029929
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The problem of purifying single-walled carbon nanotubes.
    Vivekchand SR; Jayakanth R; Govindaraj A; Rao CN
    Small; 2005 Oct; 1(10):920-3. PubMed ID: 17193370
    [No Abstract]   [Full Text] [Related]  

  • 19. Investigation of parameters controlling the dielectrophoretic assembly of carbon nanotubes on microelectrodes.
    Dimaki M; Bøggild P
    J Nanosci Nanotechnol; 2008 Apr; 8(4):1973-8. PubMed ID: 18572601
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring advantages of diverse carbon nanotube forests with tailored structures synthesized by supergrowth from engineered catalysts.
    Zhao B; Futaba DN; Yasuda S; Akoshima M; Yamada T; Hata K
    ACS Nano; 2009 Jan; 3(1):108-14. PubMed ID: 19206256
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.