BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

70 related articles for article (PubMed ID: 18020395)

  • 1. Improved biological characteristics of poly(L-lactic acid) electrospun membrane by incorporation of multiwalled carbon nanotubes/hydroxyapatite nanoparticles.
    Mei F; Zhong J; Yang X; Ouyang X; Zhang S; Hu X; Ma Q; Lu J; Ryu S; Deng X
    Biomacromolecules; 2007 Dec; 8(12):3729-35. PubMed ID: 18020395
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Poly-L-lactic acid/hydroxyapatite hybrid membrane for bone tissue regeneration.
    Sui G; Yang X; Mei F; Hu X; Chen G; Deng X; Ryu S
    J Biomed Mater Res A; 2007 Aug; 82(2):445-54. PubMed ID: 17295252
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydroxyapatite surface modified by L-lactic acid and its subsequent grafting polymerization of L-lactide.
    Qiu X; Hong Z; Hu J; Chen L; Chen X; Jing X
    Biomacromolecules; 2005; 6(3):1193-9. PubMed ID: 15877333
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlled functionalization of multiwalled carbon nanotubes with various molecular-weight poly(L-lactic acid).
    Chen GX; Kim HS; Park BH; Yoon JS
    J Phys Chem B; 2005 Dec; 109(47):22237-43. PubMed ID: 16853895
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chitosan/poly(L-lactic acid) multilayered membrane for guided tissue regeneration.
    Ku Y; Shim IK; Lee JY; Park YJ; Rhee SH; Nam SH; Park JB; Chung CP; Lee SJ
    J Biomed Mater Res A; 2009 Sep; 90(3):766-72. PubMed ID: 18615563
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of functionalization of multiwalled nanotubes on the crystallization and hydrolytic degradation of biodegradable poly(L-lactide).
    Zhao Y; Qiu Z; Yang W
    J Phys Chem B; 2008 Dec; 112(51):16461-8. PubMed ID: 19055414
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication and characterization of six electrospun poly(alpha-hydroxy ester)-based fibrous scaffolds for tissue engineering applications.
    Li WJ; Cooper JA; Mauck RL; Tuan RS
    Acta Biomater; 2006 Jul; 2(4):377-85. PubMed ID: 16765878
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrafast bone-like apatite formation on highly porous poly(l-lactic acid)-hydroxyapatite fibres.
    Zhu J; Tang D; Lu Z; Xin Z; Song J; Meng J; Lu JR; Li Z; Li J
    Mater Sci Eng C Mater Biol Appl; 2020 Nov; 116():111168. PubMed ID: 32806301
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of PLGA/MWNTs composite electrospun fibrous scaffolds for improved myogenic differentiation of C2C12 cells.
    Xu J; Xie Y; Zhang H; Ye Z; Zhang W
    Colloids Surf B Biointerfaces; 2014 Nov; 123():907-15. PubMed ID: 25466454
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reduced bone tunnel enlargement post hamstring ACL reconstruction with poly-L-lactic acid/hydroxyapatite bioabsorbable screws.
    Robinson J; Huber C; Jaraj P; Colombet P; Allard M; Meyer P
    Knee; 2006 Mar; 13(2):127-31. PubMed ID: 16352431
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An in vitro study of plasticized poly(lactic-co-glycolic acid) films as possible guided tissue regeneration membranes: material properties and drug release kinetics.
    Owen GR; Jackson JK; Chehroudi B; Brunette DM; Burt HM
    J Biomed Mater Res A; 2010 Dec; 95(3):857-69. PubMed ID: 20824651
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrospinning biomedical nanocomposite fibers of hydroxyapatite/poly(lactic acid) for bone regeneration.
    Kim HW; Lee HH; Knowles JC
    J Biomed Mater Res A; 2006 Dec; 79(3):643-9. PubMed ID: 16826596
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface modification of bioactive glass nanoparticles and the mechanical and biological properties of poly(L-lactide) composites.
    Liu A; Hong Z; Zhuang X; Chen X; Cui Y; Liu Y; Jing X
    Acta Biomater; 2008 Jul; 4(4):1005-15. PubMed ID: 18359672
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro flexural properties of hydroxyapatite and self-reinforced poly(L-lactic acid).
    Wright-Charlesworth DD; King JA; Miller DM; Lim CH
    J Biomed Mater Res A; 2006 Sep; 78(3):541-9. PubMed ID: 16736480
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrospinning fabrication of high strength and toughness polyimide nanofiber membranes containing multiwalled carbon nanotubes.
    Chen D; Liu T; Zhou X; Tjiu WC; Hou H
    J Phys Chem B; 2009 Jul; 113(29):9741-8. PubMed ID: 19603838
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Attachment of periodontal ligament cells to chlorhexidine-loaded guided tissue regeneration membranes.
    Chen YT; Hung SL; Lin LW; Chi LY; Ling LJ
    J Periodontol; 2003 Nov; 74(11):1652-9. PubMed ID: 14682663
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Guided tissue regeneration with a bioabsorbable polylactic acid membrane in gingival recessions. A histometric study in dogs.
    Casati MZ; Sallum EA; Caffesse RG; Nociti FH; Sallum AW; Pereira SL
    J Periodontol; 2000 Feb; 71(2):238-48. PubMed ID: 10711614
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface modification of poly(L-lactic acid) membrane via layer-by-layer assembly of silver nanoparticle-embedded polyelectrolyte multilayer.
    Yu DG; Lin WC; Yang MC
    Bioconjug Chem; 2007; 18(5):1521-9. PubMed ID: 17688319
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Guided tissue regeneration. Absorbable barriers.
    Wang HL; MacNeil RL
    Dent Clin North Am; 1998 Jul; 42(3):505-22. PubMed ID: 9700452
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Robocasting nanocomposite scaffolds of poly(caprolactone)/hydroxyapatite incorporating modified carbon nanotubes for hard tissue reconstruction.
    Dorj B; Won JE; Kim JH; Choi SJ; Shin US; Kim HW
    J Biomed Mater Res A; 2013 Jun; 101(6):1670-81. PubMed ID: 23184729
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.