These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 18020457)

  • 1. A genetically encoded probe for cysteine sulfenic acid protein modification in vivo.
    Takanishi CL; Ma LH; Wood MJ
    Biochemistry; 2007 Dec; 46(50):14725-32. PubMed ID: 18020457
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A genetically encoded probe for the identification of proteins that form sulfenic acid in response to H2O2 in Saccharomyces cerevisiae.
    Takanishi CL; Wood MJ
    J Proteome Res; 2011 Jun; 10(6):2715-24. PubMed ID: 21476607
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reactivity of sulfenic acid in human serum albumin.
    Turell L; Botti H; Carballal S; Ferrer-Sueta G; Souza JM; Durán R; Freeman BA; Radi R; Alvarez B
    Biochemistry; 2008 Jan; 47(1):358-67. PubMed ID: 18078330
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The oxidation of yeast alcohol dehydrogenase-1 by hydrogen peroxide in vitro.
    Men L; Wang Y
    J Proteome Res; 2007 Jan; 6(1):216-25. PubMed ID: 17203966
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular mechanism of oxidative stress perception by the Orp1 protein.
    Ma LH; Takanishi CL; Wood MJ
    J Biol Chem; 2007 Oct; 282(43):31429-36. PubMed ID: 17720812
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemical dissection of an essential redox switch in yeast.
    Paulsen CE; Carroll KS
    Chem Biol; 2009 Feb; 16(2):217-25. PubMed ID: 19230722
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protonation structures of Cys-sulfinic and Cys-sulfenic acids in the photosensitive nitrile hydratase revealed by Fourier transform infrared spectroscopy.
    Noguchi T; Nojiri M; Takei K; Odaka M; Kamiya N
    Biochemistry; 2003 Oct; 42(40):11642-50. PubMed ID: 14529274
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conformers of cysteine and cysteine sulfenic acid and mechanisms of the reaction of cysteine sulfenic acid with 5,5-dimethyl-1,3-cyclohexanedione (dimedone).
    Freeman F; Adesina IT; La JL; Lee JY; Poplawski AA
    J Phys Chem B; 2013 Dec; 117(50):16000-12. PubMed ID: 24274619
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein-sulfenic acids: diverse roles for an unlikely player in enzyme catalysis and redox regulation.
    Claiborne A; Yeh JI; Mallett TC; Luba J; Crane EJ; Charrier V; Parsonage D
    Biochemistry; 1999 Nov; 38(47):15407-16. PubMed ID: 10569923
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Catalytic and chemical competence of regulation of cdc25 phosphatase by oxidation/reduction.
    Sohn J; Rudolph J
    Biochemistry; 2003 Sep; 42(34):10060-70. PubMed ID: 12939134
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of sulfenic acids in cellular redox signaling: Reconciling chemical kinetics and molecular detection strategies.
    Heppner DE; Janssen-Heininger YMW; van der Vliet A
    Arch Biochem Biophys; 2017 Feb; 616():40-46. PubMed ID: 28126370
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A periplasmic reducing system protects single cysteine residues from oxidation.
    Depuydt M; Leonard SE; Vertommen D; Denoncin K; Morsomme P; Wahni K; Messens J; Carroll KS; Collet JF
    Science; 2009 Nov; 326(5956):1109-11. PubMed ID: 19965429
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Possibilities and pitfalls in quantifying the extent of cysteine sulfenic acid modification of specific proteins within complex biofluids.
    Rehder DS; Borges CR
    BMC Biochem; 2010 Jul; 11():25. PubMed ID: 20594348
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural, redox, and mechanistic parameters for cysteine-sulfenic acid function in catalysis and regulation.
    Claiborne A; Mallett TC; Yeh JI; Luba J; Parsonage D
    Adv Protein Chem; 2001; 58():215-76. PubMed ID: 11665489
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of active site residues in the oxidant specificity of the Orp1 thiol peroxidase.
    Takanishi CL; Ma LH; Wood MJ
    Biochem Biophys Res Commun; 2010 Dec; 403(1):46-51. PubMed ID: 21036150
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Typical 2-Cys peroxiredoxins--modulation by covalent transformations and noncovalent interactions.
    Aran M; Ferrero DS; Pagano E; Wolosiuk RA
    FEBS J; 2009 May; 276(9):2478-93. PubMed ID: 19476489
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Equilibrium analyses of the active-site asymmetry in enterococcal NADH oxidase: role of the cysteine-sulfenic acid redox center.
    Mallett TC; Parsonage D; Claiborne A
    Biochemistry; 1999 Mar; 38(10):3000-11. PubMed ID: 10074352
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sulfenic acid formation in human serum albumin by hydrogen peroxide and peroxynitrite.
    Carballal S; Radi R; Kirk MC; Barnes S; Freeman BA; Alvarez B
    Biochemistry; 2003 Aug; 42(33):9906-14. PubMed ID: 12924939
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cysteine sulfenic acid as an intermediate in disulfide bond formation and nonenzymatic protein folding.
    Rehder DS; Borges CR
    Biochemistry; 2010 Sep; 49(35):7748-55. PubMed ID: 20712299
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using DCP-Rho1 as a fluorescent probe to visualize sulfenic acid-containing proteins in living plant cells.
    Lara-Rojas F; Sarmiento-López LG; Pascual-Morales E; Ryken SE; Bezanilla M; Cardenas L
    Methods Enzymol; 2023; 683():291-308. PubMed ID: 37087193
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.