These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
290 related articles for article (PubMed ID: 18020457)
21. Oxidation state of the active-site cysteine in protein tyrosine phosphatase 1B. van Montfort RL; Congreve M; Tisi D; Carr R; Jhoti H Nature; 2003 Jun; 423(6941):773-7. PubMed ID: 12802339 [TBL] [Abstract][Full Text] [Related]
22. Identification of cysteine, methionine and tryptophan residues of actin oxidized in vivo during oxidative stress. Fedorova M; Kuleva N; Hoffmann R J Proteome Res; 2010 Mar; 9(3):1598-609. PubMed ID: 20063901 [TBL] [Abstract][Full Text] [Related]
23. Interrogating the molecular details of the peroxiredoxin activity of the Escherichia coli bacterioferritin comigratory protein using high-resolution mass spectrometry. Clarke DJ; Mackay CL; Campopiano DJ; Langridge-Smith P; Brown AR Biochemistry; 2009 May; 48(18):3904-14. PubMed ID: 19298085 [TBL] [Abstract][Full Text] [Related]
24. Reversible oxidation of the membrane distal domain of receptor PTPalpha is mediated by a cyclic sulfenamide. Yang J; Groen A; Lemeer S; Jans A; Slijper M; Roe SM; den Hertog J; Barford D Biochemistry; 2007 Jan; 46(3):709-19. PubMed ID: 17223692 [TBL] [Abstract][Full Text] [Related]
25. Reactive sulfur species: kinetics and mechanisms of the oxidation of cysteine by hypohalous acid to give cysteine sulfenic acid. Nagy P; Ashby MT J Am Chem Soc; 2007 Nov; 129(45):14082-91. PubMed ID: 17939659 [TBL] [Abstract][Full Text] [Related]
26. Oxidative modifications of glyceraldehyde-3-phosphate dehydrogenase play a key role in its multiple cellular functions. Hwang NR; Yim SH; Kim YM; Jeong J; Song EJ; Lee Y; Lee JH; Choi S; Lee KJ Biochem J; 2009 Sep; 423(2):253-64. PubMed ID: 19650766 [TBL] [Abstract][Full Text] [Related]
27. The redox biochemistry of protein sulfenylation and sulfinylation. Lo Conte M; Carroll KS J Biol Chem; 2013 Sep; 288(37):26480-8. PubMed ID: 23861405 [TBL] [Abstract][Full Text] [Related]
28. Formation and reactions of sulfenic acid in human serum albumin. Alvarez B; Carballal S; Turell L; Radi R Methods Enzymol; 2010; 473():117-36. PubMed ID: 20513474 [TBL] [Abstract][Full Text] [Related]
29. Multistep disulfide bond formation in Yap1 is required for sensing and transduction of H2O2 stress signal. Okazaki S; Tachibana T; Naganuma A; Mano N; Kuge S Mol Cell; 2007 Aug; 27(4):675-88. PubMed ID: 17707237 [TBL] [Abstract][Full Text] [Related]
30. Structural basis for redox regulation of Yap1 transcription factor localization. Wood MJ; Storz G; Tjandra N Nature; 2004 Aug; 430(7002):917-21. PubMed ID: 15318225 [TBL] [Abstract][Full Text] [Related]
31. Cysteine-106 of DJ-1 is the most sensitive cysteine residue to hydrogen peroxide-mediated oxidation in vivo in human umbilical vein endothelial cells. Kinumi T; Kimata J; Taira T; Ariga H; Niki E Biochem Biophys Res Commun; 2004 May; 317(3):722-8. PubMed ID: 15081400 [TBL] [Abstract][Full Text] [Related]
32. Protein carbonylation: 2,4-dinitrophenylhydrazine reacts with both aldehydes/ketones and sulfenic acids. Dalle-Donne I; Carini M; Orioli M; Vistoli G; Regazzoni L; Colombo G; Rossi R; Milzani A; Aldini G Free Radic Biol Med; 2009 May; 46(10):1411-9. PubMed ID: 19268703 [TBL] [Abstract][Full Text] [Related]
33. H2O2/nitrite-induced post-translational modifications of human hemoglobin determined by mass spectrometry: redox regulation of tyrosine nitration and 3-nitrotyrosine reduction by antioxidants. Chen HJ; Chang CM; Lin WP; Cheng DL; Leong MI Chembiochem; 2008 Jan; 9(2):312-23. PubMed ID: 18161731 [TBL] [Abstract][Full Text] [Related]
34. 13C NMR analysis of the cysteine-sulfenic acid redox center of enterococcal NADH peroxidase. Crane EJ; Vervoort J; Claiborne A Biochemistry; 1997 Jul; 36(28):8611-8. PubMed ID: 9214307 [TBL] [Abstract][Full Text] [Related]
35. Hemoglobin glutathionylation can occur through cysteine sulfenic acid intermediate: electrospray ionization LTQ-Orbitrap hybrid mass spectrometry studies. Regazzoni L; Panusa A; Yeum KJ; Carini M; Aldini G J Chromatogr B Analyt Technol Biomed Life Sci; 2009 Oct; 877(28):3456-61. PubMed ID: 19493711 [TBL] [Abstract][Full Text] [Related]
36. Thermodynamic basis for redox regulation of the Yap1 signal transduction pathway. Mason JT; Kim SK; Knaff DB; Wood MJ Biochemistry; 2006 Nov; 45(45):13409-17. PubMed ID: 17087494 [TBL] [Abstract][Full Text] [Related]
37. The role of cysteine residues as redox-sensitive regulatory switches. Barford D Curr Opin Struct Biol; 2004 Dec; 14(6):679-86. PubMed ID: 15582391 [TBL] [Abstract][Full Text] [Related]
38. Protein sulfenic acid formation: from cellular damage to redox regulation. Roos G; Messens J Free Radic Biol Med; 2011 Jul; 51(2):314-26. PubMed ID: 21605662 [TBL] [Abstract][Full Text] [Related]
39. Capturing a sulfenic acid with arylboronic acids and benzoxaborole. Liu CT; Benkovic SJ J Am Chem Soc; 2013 Oct; 135(39):14544-7. PubMed ID: 24050501 [TBL] [Abstract][Full Text] [Related]
40. Role of glutaredoxin 2 and cytosolic thioredoxins in cysteinyl-based redox modification of the 20S proteasome. Silva GM; Netto LE; Discola KF; Piassa-Filho GM; Pimenta DC; Bárcena JA; Demasi M FEBS J; 2008 Jun; 275(11):2942-55. PubMed ID: 18435761 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]