These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

837 related articles for article (PubMed ID: 18020631)

  • 1. Random-phase-approximation-based correlation energy functionals: benchmark results for atoms.
    Jiang H; Engel E
    J Chem Phys; 2007 Nov; 127(18):184108. PubMed ID: 18020631
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ab initio correlation functionals from second-order perturbation theory.
    Schweigert IV; Lotrich VF; Bartlett RJ
    J Chem Phys; 2006 Sep; 125(10):104108. PubMed ID: 16999516
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kohn-Sham perturbation theory: simple solution to variational instability of second order correlation energy functional.
    Jiang H; Engel E
    J Chem Phys; 2006 Nov; 125(18):184108. PubMed ID: 17115739
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Second-order Kohn-Sham perturbation theory: correlation potential for atoms in a cavity.
    Jiang H; Engel E
    J Chem Phys; 2005 Dec; 123(22):224102. PubMed ID: 16375465
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Double-hybrid density functional theory for excited electronic states of molecules.
    Grimme S; Neese F
    J Chem Phys; 2007 Oct; 127(15):154116. PubMed ID: 17949141
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Away from generalized gradient approximation: orbital-dependent exchange-correlation functionals.
    Baerends EJ; Gritsenko OV
    J Chem Phys; 2005 Aug; 123(6):62202. PubMed ID: 16122288
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Short-range exchange and correlation energy density functionals: beyond the local-density approximation.
    Toulouse J; Colonna F; Savin A
    J Chem Phys; 2005 Jan; 122(1):14110. PubMed ID: 15638645
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Density-functional theory with effective potential expressed as a direct mapping of the external potential: applications to atomization energies and ionization potentials.
    Glushkov VN; Fesenko SI
    J Chem Phys; 2006 Dec; 125(23):234111. PubMed ID: 17190551
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluctuation-dissipation theorem density-functional theory.
    Furche F; Van Voorhis T
    J Chem Phys; 2005 Apr; 122(16):164106. PubMed ID: 15945671
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Orbital-dependent correlation energy in density-functional theory based on a second-order perturbation approach: success and failure.
    Mori-Sánchez P; Wu Q; Yang W
    J Chem Phys; 2005 Aug; 123(6):62204. PubMed ID: 16122290
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Power series expansion of the random phase approximation correlation energy: The role of the third- and higher-order contributions.
    Lu D; Nguyen HV; Galli G
    J Chem Phys; 2010 Oct; 133(15):154110. PubMed ID: 20969373
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fast computation of molecular random phase approximation correlation energies using resolution of the identity and imaginary frequency integration.
    Eshuis H; Yarkony J; Furche F
    J Chem Phys; 2010 Jun; 132(23):234114. PubMed ID: 20572696
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Semiempirical hybrid density functional with perturbative second-order correlation.
    Grimme S
    J Chem Phys; 2006 Jan; 124(3):034108. PubMed ID: 16438568
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of the nonlocal exchange on the performance of the orbital-dependent correlation functionals from second-order perturbation theory.
    Schweigert IV; Bartlett RJ
    J Chem Phys; 2008 Sep; 129(12):124109. PubMed ID: 19045008
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cubic response functions in time-dependent density functional theory.
    Jansik B; Sałek P; Jonsson D; Vahtras O; Agren H
    J Chem Phys; 2005 Feb; 122(5):54107. PubMed ID: 15740310
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increasing the applicability of density functional theory. II. Correlation potentials from the random phase approximation and beyond.
    Verma P; Bartlett RJ
    J Chem Phys; 2012 Jan; 136(4):044105. PubMed ID: 22299859
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Description of core excitations by time-dependent density functional theory with local density approximation, generalized gradient approximation, meta-generalized gradient approximation, and hybrid functionals.
    Imamura Y; Otsuka T; Nakai H
    J Comput Chem; 2007 Sep; 28(12):2067-74. PubMed ID: 17436256
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Orbital- and state-dependent functionals in density-functional theory.
    Görling A
    J Chem Phys; 2005 Aug; 123(6):62203. PubMed ID: 16122289
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Developing the random phase approximation into a practical post-Kohn-Sham correlation model.
    Furche F
    J Chem Phys; 2008 Sep; 129(11):114105. PubMed ID: 19044948
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the performance of local, semilocal, and nonlocal exchange-correlation functionals on transition metal molecules.
    Ramírez-Solís A
    J Chem Phys; 2007 Jun; 126(22):224105. PubMed ID: 17581042
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 42.