These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 18020652)

  • 1. Fast thermal desorption spectroscopy study of H/D isotopic exchange reaction in polycrystalline ice near its melting point.
    Lu H; McCartney SA; Sadtchenko V
    J Chem Phys; 2007 Nov; 127(18):184701. PubMed ID: 18020652
    [TBL] [Abstract][Full Text] [Related]  

  • 2. H/D exchange kinetics in pure and HCl doped polycrystalline ice at temperatures near its melting point: structure, chemical transport, and phase transitions at grain boundaries.
    Lu H; McCartney SA; Sadtchenko V
    J Chem Phys; 2009 Feb; 130(5):054501. PubMed ID: 19206978
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fast thermal desorption spectroscopy study of morphology and vaporization kinetics of polycrystalline ice films.
    Lu H; McCartney SA; Chonde M; Smyla D; Sadtchenko V
    J Chem Phys; 2006 Jul; 125(4):44709. PubMed ID: 16942176
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diffusion kinetics for methanol in polycrystalline ice.
    Marchand P; Riou S; Ayotte P
    J Phys Chem A; 2006 Oct; 110(41):11654-64. PubMed ID: 17034159
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The vaporization rate of ice at temperatures near its melting point.
    Sadtchenko V; Brindza M; Chonde M; Palmore B; Eom R
    J Chem Phys; 2004 Dec; 121(23):11980-92. PubMed ID: 15634160
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fast grain boundary diffusion and surface exchange reactions at active surface sites of polycrystalline materials.
    Preis W
    Phys Chem Chem Phys; 2006 Jun; 8(22):2629-34. PubMed ID: 16738717
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interactions of oxalic acid and ice on Cu surface.
    Yan H; Chu LT
    Langmuir; 2008 Sep; 24(17):9410-20. PubMed ID: 18671415
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fast oxygen exchange and diffusion kinetics of grain boundaries in Sr-doped LaMnO3 thin films.
    Navickas E; Huber TM; Chen Y; Hetaba W; Holzlechner G; Rupp G; Stöger-Pollach M; Friedbacher G; Hutter H; Yildiz B; Fleig J
    Phys Chem Chem Phys; 2015 Mar; 17(12):7659-69. PubMed ID: 25594681
    [TBL] [Abstract][Full Text] [Related]  

  • 9. D(2) desorption kinetics on amorphous solid water: from compact to porous ice films.
    Fillion JH; Amiaud L; Congiu E; Dulieu F; Momeni A; Lemaire JL
    Phys Chem Chem Phys; 2009 Jun; 11(21):4396-402. PubMed ID: 19458844
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A direct optical method for the study of grain boundary melting.
    Thomson ES; Wettlaufer JS; Wilen LA
    Rev Sci Instrum; 2009 Oct; 80(10):103903. PubMed ID: 19895072
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diffusion of HDO in pure and acid-doped ice films.
    Oxley SP; Zahn CM; Pursell CJ
    J Phys Chem A; 2006 Sep; 110(38):11064-73. PubMed ID: 16986839
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proton transfer and H/D isotopic exchange of water molecules mediated by hydroxide ions on ice film surfaces.
    Kim JH; Kim YK; Kang H
    J Chem Phys; 2009 Jul; 131(4):044705. PubMed ID: 19655907
    [TBL] [Abstract][Full Text] [Related]  

  • 13. H/D isotopic exchange between water molecules at ice surfaces.
    Park SC; Jung KH; Kang H
    J Chem Phys; 2004 Aug; 121(6):2765-74. PubMed ID: 15281880
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Possible displacement of the climate signal in ancient ice by premelting and anomalous diffusion.
    Rempel AW; Waddington ED; Wettlaufer JS; Worster MG
    Nature; 2001 May; 411(6837):568-71. PubMed ID: 11385567
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular dynamics study of grain boundaries and triple junctions in ice.
    Yagasaki T; Matsumoto M; Tanaka H
    J Chem Phys; 2020 Sep; 153(12):124502. PubMed ID: 33003762
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal evolution of acetic acid nanodeposits over 123-180 K on noncrystalline ice and polycrystalline ice studied by FTIR reflection-absorption spectroscopy: hydrogen-bonding interactions in acetic acid and between acetic acid and ice.
    Gao Q; Leung KT
    J Phys Chem B; 2005 Jul; 109(27):13263-71. PubMed ID: 16852654
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interfacial reaction of water ice on polycrystalline vanadium and its effects on thermal desorption of water.
    Souda R
    Phys Chem Chem Phys; 2014 Jan; 16(3):1095-100. PubMed ID: 24287732
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photodissociation of polycrystalline and amorphous water ice films at 157 and 193 nm.
    Yabushita A; Kanda D; Kawanaka N; Kawasaki M; Ashfold MN
    J Chem Phys; 2006 Oct; 125(13):133406. PubMed ID: 17029480
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystalline ice growth on Pt(111) and Pd(111): nonwetting growth on a hydrophobic water monolayer.
    Kimmel GA; Petrik NG; Dohnálek Z; Kay BD
    J Chem Phys; 2007 Mar; 126(11):114702. PubMed ID: 17381223
    [TBL] [Abstract][Full Text] [Related]  

  • 20. IR spectroscopic testing of surfaces in water ice and in icy mixtures with prussic acid or ammonia.
    Rudakova AV; Sekushin VN; Marinov IL; Tsyganenko AA
    Langmuir; 2009 Feb; 25(3):1482-7. PubMed ID: 19117474
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.