BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

466 related articles for article (PubMed ID: 18020653)

  • 21. Thermal conductivity of amorphous polystyrene in supercritical carbon dioxide studied by reverse nonequilibrium molecular dynamics simulations.
    Algaer EA; Alaghemandi M; Böhm MC; Müller-Plathe F
    J Phys Chem A; 2009 Oct; 113(43):11487-94. PubMed ID: 19569703
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nonequilibrium thermodynamics of interfaces using classical density functional theory.
    Johannessen E; Gross J; Bedeaux D
    J Chem Phys; 2008 Nov; 129(18):184703. PubMed ID: 19045419
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ultralow thermal conductivity in organoclay nanolaminates synthesized via simple self-assembly.
    Losego MD; Blitz IP; Vaia RA; Cahill DG; Braun PV
    Nano Lett; 2013 May; 13(5):2215-9. PubMed ID: 23594105
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A homogeneous nonequilibrium molecular dynamics method for calculating thermal conductivity with a three-body potential.
    Mandadapu KK; Jones RE; Papadopoulos P
    J Chem Phys; 2009 May; 130(20):204106. PubMed ID: 19485436
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A nonequilibrium molecular dynamics method for thermal conductivities based on thermal noise.
    Terao T; Müller-Plathe F
    J Chem Phys; 2005 Feb; 122(8):81103. PubMed ID: 15836013
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Phonon thermal conductivity suppression of bulk silicon nanowire composites for efficient thermoelectric conversion.
    Chen TG; Yu P; Chou RH; Pan CL
    Opt Express; 2010 Sep; 18 Suppl 3():A467-76. PubMed ID: 21165077
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Interfacial thermal transport and structural preferences in carbon nanotube-polyamide-6,6 nanocomposites: how important are chemical functionalization effects?
    Gharib-Zahedi MR; Tafazzoli M; Böhm MC; Alaghemandi M
    Phys Chem Chem Phys; 2015 Jun; 17(22):14502-12. PubMed ID: 25942680
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Anisotropy of the thermal conductivity in a crystalline polymer: reverse nonequilibrium molecular dynamics simulation of the delta phase of syndiotactic polystyrene.
    Rossinsky E; Müller-Plathe F
    J Chem Phys; 2009 Apr; 130(13):134905. PubMed ID: 19355778
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Equilibrium limit of thermal conduction and boundary scattering in nanostructures.
    Haskins JB; Kınacı A; Sevik C; Çağın T
    J Chem Phys; 2014 Jun; 140(24):244112. PubMed ID: 24985623
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Measuring Phonon Mean Free Path Distributions by Probing Quasiballistic Phonon Transport in Grating Nanostructures.
    Zeng L; Collins KC; Hu Y; Luckyanova MN; Maznev AA; Huberman S; Chiloyan V; Zhou J; Huang X; Nelson KA; Chen G
    Sci Rep; 2015 Nov; 5():17131. PubMed ID: 26612032
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Inter-carbon nanotube contact in thermal transport of controlled-morphology polymer nanocomposites.
    Duong HM; Yamamoto N; Papavassiliou DV; Maruyama S; Wardle BL
    Nanotechnology; 2009 Apr; 20(15):155702. PubMed ID: 19420554
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Randomness-Induced Phonon Localization in Graphene Heat Conduction.
    Hu S; Zhang Z; Jiang P; Chen J; Volz S; Nomura M; Li B
    J Phys Chem Lett; 2018 Jul; 9(14):3959-3968. PubMed ID: 29968477
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The role of interface thermal boundary resistance in the overall thermal conductivity of Si-Ge multilayered structures.
    Samvedi V; Tomar V
    Nanotechnology; 2009 Sep; 20(36):365701. PubMed ID: 19687536
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Size and dimensionality dependent phonon conductivity in nanocomposites.
    Al-Otaibi J; Srivastava GP
    J Phys Condens Matter; 2016 Apr; 28(14):145304. PubMed ID: 26974428
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Strain engineering of thermal conductivity in graphene sheets and nanoribbons: a demonstration of magic flexibility.
    Wei N; Xu L; Wang HQ; Zheng JC
    Nanotechnology; 2011 Mar; 22(10):105705. PubMed ID: 21289391
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The effect of the electron-phonon coupling on the thermal conductivity of silicon nanowires.
    Wan W; Xiong B; Zhang W; Feng J; Wang E
    J Phys Condens Matter; 2012 Jul; 24(29):295402. PubMed ID: 22728956
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Strain effects on phonon transport in antimonene investigated using a first-principles study.
    Zhang AX; Liu JT; Guo SD; Li HC
    Phys Chem Chem Phys; 2017 Jun; 19(22):14520-14526. PubMed ID: 28537286
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Thermal conductivity of methane hydrate from experiment and molecular simulation.
    Rosenbaum EJ; English NJ; Johnson JK; Shaw DW; Warzinski RP
    J Phys Chem B; 2007 Nov; 111(46):13194-205. PubMed ID: 17967008
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Thermal conductivity of highly asymmetric binary mixtures: how important are heat/mass coupling effects?
    Armstrong J; Bresme F
    Phys Chem Chem Phys; 2014 Jun; 16(24):12307-16. PubMed ID: 24818599
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Thermal Conductivity of Ultrahigh Molecular Weight Polyethylene Crystal: Defect Effect Uncovered by 0 K Limit Phonon Diffusion.
    Liu J; Xu Z; Cheng Z; Xu S; Wang X
    ACS Appl Mater Interfaces; 2015 Dec; 7(49):27279-88. PubMed ID: 26593380
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.