These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 18020684)

  • 41. Sensitivity of the glochidia (larvae) of freshwater mussels to copper: assessing the effect of water hardness and dissolved organic carbon on the sensitivity of endangered species.
    Gillis PL; Mitchell RJ; Schwalb AN; McNichols KA; Mackie GL; Wood CM; Ackerman JD
    Aquat Toxicol; 2008 Jun; 88(2):137-45. PubMed ID: 18490065
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Speciation of dissolved copper in human impacted freshwater and saltwater lakes.
    Wang D; Gao Y; Larsson K; Lin W
    Environ Sci Pollut Res Int; 2016 Jun; 23(11):10832-10840. PubMed ID: 26893182
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Validation of a biotic ligand model on site-specific copper toxicity to Daphnia magna in the Yeongsan River, Korea.
    Park J; Ra JS; Rho H; Cho J; Kim SD
    Ecotoxicol Environ Saf; 2018 Mar; 149():108-115. PubMed ID: 29154134
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The effects of water quality and age on the acute toxicity of copper to the Florida apple snail, Pomacea paludosa.
    Rogevich EC; Hoang TC; Rand GM
    Arch Environ Contam Toxicol; 2008 May; 54(4):690-6. PubMed ID: 18180860
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The influence of salinity and dissolved organic carbon on the toxicity of copper to the estuarine copepod, Eurytemora affinis.
    Hall LW; Anderson RD; Lewis BL; Arnold WR
    Arch Environ Contam Toxicol; 2008 Jan; 54(1):44-56. PubMed ID: 17721798
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effect of dissolved organic matter source on acute copper toxicity to Daphnia magna.
    De Schamphelaere KA; Vasconcelos FM; Tack FM; Allen HE; Janssen CR
    Environ Toxicol Chem; 2004 May; 23(5):1248-55. PubMed ID: 15180376
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Amelioration of copper toxicity to a tropical freshwater microalga: Effect of natural DOM source and season.
    Macoustra GK; Jolley DF; Stauber J; Koppel DJ; Holland A
    Environ Pollut; 2020 Nov; 266(Pt 2):115141. PubMed ID: 32659625
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Influence of sediment metal spiking procedures on copper bioavailability and toxicity in the estuarine bivalve Indoaustriella lamprelli.
    Hutchins CM; Teasdale PR; Lee SY; Simpson SL
    Environ Toxicol Chem; 2009 Sep; 28(9):1885-92. PubMed ID: 19335027
    [TBL] [Abstract][Full Text] [Related]  

  • 49. In situ measurements of labile Cu, Cd and Mn in river waters using DGT.
    Denney S; Sherwood J; Leyden J
    Sci Total Environ; 1999 Oct; 239(1-3):71-80. PubMed ID: 10570834
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Reduction in labile copper in the 7-day Ceriodaphnia dubia toxicity test due to the interaction with zooplankton food.
    Hauri JF; Horne AJ
    Chemosphere; 2004 Aug; 56(7):717-23. PubMed ID: 15234169
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Assessing the fate and toxicity of Thallium I and Thallium III to three aquatic organisms.
    Rickwood CJ; King M; Huntsman-Mapila P
    Ecotoxicol Environ Saf; 2015 May; 115():300-8. PubMed ID: 25659481
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Application of an acute biotic ligand model to predict chronic copper toxicity to Daphnia magna in natural waters of Chile and reconstituted synthetic waters.
    Villavicencio G; Urrestarazu P; Arbildua J; Rodriguez PH
    Environ Toxicol Chem; 2011 Oct; 30(10):2319-25. PubMed ID: 21796669
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effects of dissolved organic carbon concentration and source, pH, and water hardness on chronic toxicity of copper to Daphnia magna.
    De Schamphelaere KA; Janssen CR
    Environ Toxicol Chem; 2004 May; 23(5):1115-22. PubMed ID: 15180361
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Evaluation of the Chemcatcher and DGT passive samplers for monitoring metals with highly fluctuating water concentrations.
    Allan IJ; Knutsson J; Guigues N; Mills GA; Fouillac AM; Greenwood R
    J Environ Monit; 2007 Jul; 9(7):672-81. PubMed ID: 17607387
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Bioassessment of an Appalachian headwater stream influenced by an abandoned arsenic mine.
    Valenti TW; Chaffin JL; Cherry DS; Schreiber ME; Valett HM; Charles M
    Arch Environ Contam Toxicol; 2005 Nov; 49(4):488-96. PubMed ID: 16205987
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Copper complexation by tannic acid in aqueous solution.
    Kraal P; Jansen B; Nierop KG; Verstraten JM
    Chemosphere; 2006 Dec; 65(11):2193-8. PubMed ID: 16837024
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [Transport and bioavailability of Cu, Pb, Zn and Ni in surface sediments of Daliao River watersystem].
    Fan YH; Lin CY; He MC; Yang ZF
    Huan Jing Ke Xue; 2008 Dec; 29(12):3469-76. PubMed ID: 19256387
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effects of dietary copper on life-history traits of a tropical freshwater cladoceran.
    Gusso-Choueri PK; Choueri RB; Lombardi AT; Melão MG
    Arch Environ Contam Toxicol; 2012 May; 62(4):589-98. PubMed ID: 22076682
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Chemical speciation and partitioning of trace metals (Cd, Co, Cu, Ni, Pb) in the lower Athabasca river and its tributaries (Alberta, Canada).
    Guéguen C; Clarisse O; Perroud A; McDonald A
    J Environ Monit; 2011 Oct; 13(10):2865-72. PubMed ID: 21842066
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Application of Biotic Ligand Model in Predicting Copper Acute Toxicity to Carp (Cyprinidae).
    Wang W; Liang Q; Zhao J; Chen R
    Bull Environ Contam Toxicol; 2017 Jan; 98(1):22-26. PubMed ID: 27928618
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.