BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 18020690)

  • 1. Effects on growth and physiological parameters in wheat (Triticum aestivum L.) grown in soil and irrigated with cyanobacterial toxin contaminated water.
    Pflugmacher S; Hofmann J; Hübner B
    Environ Toxicol Chem; 2007 Dec; 26(12):2710-6. PubMed ID: 18020690
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of phytotoxicity and ecotoxicity potentials of a cyanobacterial extract containing microcystins under realistic environmental concentrations and in a soil-plant system.
    Corbel S; Mougin C; Martin-Laurent F; Crouzet O; Bru D; Nélieu S; Bouaïcha N
    Chemosphere; 2015 Jun; 128():332-40. PubMed ID: 25754013
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of microcystin and complex cyanobacterial samples on the growth and oxidative stress parameters in green alga Pseudokirchneriella subcapitata and comparison with the model oxidative stressor--herbicide paraquat.
    Bártová K; Hilscherová K; Babica P; Maršálek B; Bláha L
    Environ Toxicol; 2011 Nov; 26(6):641-8. PubMed ID: 20549631
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects on growth, antioxidant enzyme activity and levels of extracellular proteins in the green alga Chlorella vulgaris exposed to crude cyanobacterial extracts and pure microcystin and cylindrospermopsin.
    Campos A; Araújo P; Pinheiro C; Azevedo J; Osório H; Vasconcelos V
    Ecotoxicol Environ Saf; 2013 Aug; 94():45-53. PubMed ID: 23726538
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cyanobacterial toxins: a qualitative meta-analysis of concentrations, dosage and effects in freshwater, estuarine and marine biota.
    Ibelings BW; Havens KE
    Adv Exp Med Biol; 2008; 619():675-732. PubMed ID: 18461789
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of uptake and phytotoxicity of cyanobacterial extracts containing microcystins or cylindrospermopsin on parsley (Petroselinum crispum L.) and coriander (Coriandrum sativum L).
    Pereira AL; Azevedo J; Vasconcelos V
    Environ Sci Pollut Res Int; 2017 Jan; 24(2):1999-2009. PubMed ID: 27807783
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of soil cadmium on growth, oxidative stress and antioxidant system in wheat seedlings (Triticum aestivum L.).
    Lin R; Wang X; Luo Y; Du W; Guo H; Yin D
    Chemosphere; 2007 Aug; 69(1):89-98. PubMed ID: 17568654
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Translocation of the cyanobacterial toxin microcystin-LR into guttation drops of Triticum aestivum and remaining toxicity.
    Pflugmacher S; Sulk A; Kim S; Esterhuizen-Londt M
    Environ Pollut; 2019 Oct; 253():61-67. PubMed ID: 31302403
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Promotion of oxidative stress in the aquatic macrophyte Ceratophyllum demersum during biotransformation of the cyanobacterial toxin microcystin-LR.
    Pflugmacher S
    Aquat Toxicol; 2004 Dec; 70(3):169-78. PubMed ID: 15550274
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Toxic effect of musk ketone based on the determinations of wheat (Triticum aestivum) seed germination and root elongation].
    Fan F; Zhou QX; Wang ME
    Ying Yong Sheng Tai Xue Bao; 2008 Jun; 19(6):1396-400. PubMed ID: 18808038
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antioxidative stress response of Lepidium sativum due to exposure to cyanobacterial secondary metabolites.
    Stüven J; Pflugmacher S
    Toxicon; 2007 Jul; 50(1):85-93. PubMed ID: 17434197
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of cyanobacterial toxins and cyanobacterial cell-free crude extract on germination of alfalfa (Medicago sativa) and induction of oxidative stress.
    Pflugmacher S; Jung K; Lundvall L; Neumann S; Peuthert A
    Environ Toxicol Chem; 2006 Sep; 25(9):2381-7. PubMed ID: 16986793
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Uptake of microcystins-LR and -LF (cyanobacterial toxins) in seedlings of several important agricultural plant species and the correlation with cellular damage (lipid peroxidation).
    Peuthert A; Chakrabarti S; Pflugmacher S
    Environ Toxicol; 2007 Aug; 22(4):436-42. PubMed ID: 17607734
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detoxification and oxidative stress responses along with microcystins accumulation in Japanese quail exposed to cyanobacterial biomass.
    Pasková V; Adamovský O; Pikula J; Skocovská B; Band'ouchová H; Horáková J; Babica P; Marsálek B; Hilscherová K
    Sci Total Environ; 2008 Jul; 398(1-3):34-47. PubMed ID: 18423819
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hepatoprotective efficacy of certain flavonoids against microcystin induced toxicity in mice.
    Jayaraj R; Deb U; Bhaskar AS; Prasad GB; Rao PV
    Environ Toxicol; 2007 Oct; 22(5):472-9. PubMed ID: 17696131
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo influence of cyanobacterial toxins on enzyme activity and gene expression of protein phosphatases in Alfalfa (Medicago sativa).
    Peuthert A; Lawton L; Pflugmacher S
    Toxicon; 2008 Jul; 52(1):84-90. PubMed ID: 18620722
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cyanotoxins in desert environments may present a risk to human health.
    Metcalf JS; Richer R; Cox PA; Codd GA
    Sci Total Environ; 2012 Apr; 421-422():118-23. PubMed ID: 22369867
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lettuce irrigated with contaminated water: Photosynthetic effects, antioxidative response and bioaccumulation of microcystin congeners.
    Bittencourt-Oliveira Mdo C; Cordeiro-Araújo MK; Chia MA; Arruda-Neto JD; de Oliveira ÊT; dos Santos F
    Ecotoxicol Environ Saf; 2016 Jun; 128():83-90. PubMed ID: 26896895
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study of the antioxidant response of several bean variants to irrigation with water containing MC-LR and cyanobacterial crude extract.
    Pichardo S; Pflugmacher S
    Environ Toxicol; 2011 Jun; 26(3):300-6. PubMed ID: 20549645
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single and combined exposure to MC-LR and BMAA confirm suitability of Aegagropila linnaei for use in green liver systems(®)-A case study with cyanobacterial toxins.
    Contardo-Jara V; Kuehn S; Pflugmacher S
    Aquat Toxicol; 2015 Aug; 165():101-8. PubMed ID: 26037095
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.