BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 18021241)

  • 21. Protein processing and other modifications analyzed by diagonal peptide chromatography.
    Gevaert K; Van Damme P; Ghesquière B; Vandekerckhove J
    Biochim Biophys Acta; 2006 Dec; 1764(12):1801-10. PubMed ID: 17035109
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Venomics: unravelling the complexity of animal venoms with mass spectrometry.
    Escoubas P; Quinton L; Nicholson GM
    J Mass Spectrom; 2008 Mar; 43(3):279-95. PubMed ID: 18302316
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Liquid chromatography-electron capture-atmospheric pressure chemical ionization-mass spectrometry.
    Karst U
    Anal Bioanal Chem; 2005 Aug; 382(8):1744-6. PubMed ID: 16007446
    [No Abstract]   [Full Text] [Related]  

  • 24. Can MS fully exploit the benefits of fast chromatography?
    Hopfgartner G
    Bioanalysis; 2011 Jan; 3(2):121-3. PubMed ID: 21250839
    [No Abstract]   [Full Text] [Related]  

  • 25. Prediction of electron-transfer/capture dissociation spectra of peptides.
    Zhang Z
    Anal Chem; 2010 Mar; 82(5):1990-2005. PubMed ID: 20148580
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Proteome analysis of Sorangium cellulosum employing 2D-HPLC-MS/MS and improved database searching strategies for CID and ETD fragment spectra.
    Leinenbach A; Hartmer R; Lubeck M; Kneissl B; Elnakady YA; Baessmann C; Müller R; Huber CG
    J Proteome Res; 2009 Sep; 8(9):4350-61. PubMed ID: 19634914
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Advances and challenges in liquid chromatography-mass spectrometry-based proteomics profiling for clinical applications.
    Qian WJ; Jacobs JM; Liu T; Camp DG; Smith RD
    Mol Cell Proteomics; 2006 Oct; 5(10):1727-44. PubMed ID: 16887931
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A simple and inexpensive on-column frit fabrication method for fused-silica capillaries for increased capacity and versatility in LC-MS/MS applications.
    Wang LC; Okitsu CY; Kochounian H; Rodriguez A; Hsieh CL; Zandi E
    Proteomics; 2008 May; 8(9):1758-61. PubMed ID: 18384106
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of chemical modifications on peptide fragmentation behavior upon electron transfer induced dissociation.
    Hennrich ML; Boersema PJ; van den Toorn H; Mischerikow N; Heck AJ; Mohammed S
    Anal Chem; 2009 Sep; 81(18):7814-22. PubMed ID: 19689115
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Editorial for "advances in biological mass spectrometry and proteomics".
    Cramer R
    Methods; 2011 Aug; 54(4):349-50. PubMed ID: 21839395
    [No Abstract]   [Full Text] [Related]  

  • 31. Proteomics technologies for identification and validation of protein targets.
    Hale JE; Ou W; Shiyanov P; Knierman MD; Ludwig JR
    Methods Biochem Anal; 2005; 45():159-80. PubMed ID: 19235295
    [No Abstract]   [Full Text] [Related]  

  • 32. Towards quantitative analysis of proteome dynamics.
    Kühner S; Gavin AC
    Nat Biotechnol; 2007 Mar; 25(3):298-300. PubMed ID: 17344880
    [No Abstract]   [Full Text] [Related]  

  • 33. Simple and universal tool to remove on-line impurities in mono- or two-dimensional liquid chromatography-mass spectrometry analysis.
    Hesse AM; Marcelo P; Rossier J; Vinh J
    J Chromatogr A; 2008 May; 1189(1-2):175-82. PubMed ID: 18215397
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mass spectrometers for the analysis of biomolecules.
    Baldwin MA
    Methods Enzymol; 2005; 402():3-48. PubMed ID: 16401505
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Locations everyone: lights, camera, action!
    Murphy RF; Labaer J
    J Proteome Res; 2009 Jan; 8(1):1. PubMed ID: 19055481
    [No Abstract]   [Full Text] [Related]  

  • 36. Technical, bioinformatical and statistical aspects of liquid chromatography-mass spectrometry (LC-MS) and capillary electrophoresis-mass spectrometry (CE-MS) based clinical proteomics: a critical assessment.
    Dakna M; He Z; Yu WC; Mischak H; Kolch W
    J Chromatogr B Analyt Technol Biomed Life Sci; 2009 May; 877(13):1250-8. PubMed ID: 19010091
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enhanced sensitivity in proteomics experiments using FAIMS coupled with a hybrid linear ion trap/Orbitrap mass spectrometer.
    Saba J; Bonneil E; Pomiès C; Eng K; Thibault P
    J Proteome Res; 2009 Jul; 8(7):3355-66. PubMed ID: 19469569
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Methods for analyzing peptides and proteins on a chromatographic timescale by electron-transfer dissociation mass spectrometry.
    Udeshi ND; Compton PD; Shabanowitz J; Hunt DF; Rose KL
    Nat Protoc; 2008; 3(11):1709-17. PubMed ID: 18927556
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Data-dependent electron transfer dissociation of large peptides and medium size proteins in a QTOF instrument on a liquid chromatography timescale.
    Hartmer RG; Kaplan DA; Stoermer C; Lubeck M; Park MA
    Rapid Commun Mass Spectrom; 2009 Aug; 23(15):2273-82. PubMed ID: 19575399
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biomarker discovery for kidney diseases by mass spectrometry.
    Niwa T
    J Chromatogr B Analyt Technol Biomed Life Sci; 2008 Jul; 870(2):148-53. PubMed ID: 18024247
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.