These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 18022197)

  • 21. The maturase encoded by a group I intron from Aspergillus nidulans stabilizes RNA tertiary structure and promotes rapid splicing.
    Ho Y; Waring RB
    J Mol Biol; 1999 Oct; 292(5):987-1001. PubMed ID: 10512698
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Involvement of DEAD-box proteins in group I and group II intron splicing. Biochemical characterization of Mss116p, ATP hydrolysis-dependent and -independent mechanisms, and general RNA chaperone activity.
    Halls C; Mohr S; Del Campo M; Yang Q; Jankowsky E; Lambowitz AM
    J Mol Biol; 2007 Jan; 365(3):835-55. PubMed ID: 17081564
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fast formation of the P3-P7 pseudoknot: a strategy for efficient folding of the catalytically active ribozyme.
    Zhang L; Xiao M; Lu C; Zhang Y
    RNA; 2005 Jan; 11(1):59-69. PubMed ID: 15574515
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A map of the binding site for catalytic domain 5 in the core of a group II intron ribozyme.
    Konforti BB; Liu Q; Pyle AM
    EMBO J; 1998 Dec; 17(23):7105-17. PubMed ID: 9843514
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A DEAD-box protein alone promotes group II intron splicing and reverse splicing by acting as an RNA chaperone.
    Mohr S; Matsuura M; Perlman PS; Lambowitz AM
    Proc Natl Acad Sci U S A; 2006 Mar; 103(10):3569-74. PubMed ID: 16505350
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The DIVa maturase binding site in the yeast group II intron aI2 is essential for intron homing but not for in vivo splicing.
    Huang HR; Chao MY; Armstrong B; Wang Y; Lambowitz AM; Perlman PS
    Mol Cell Biol; 2003 Dec; 23(23):8809-19. PubMed ID: 14612420
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Catalysis of RNA cleavage by a ribozyme derived from the group I intron of Anabaena pre-tRNA(Leu).
    Zaug AJ; Dávila-Aponte JA; Cech TR
    Biochemistry; 1994 Dec; 33(49):14935-47. PubMed ID: 7527660
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Metal ion binding sites in a group II intron core.
    Sigel RK; Vaidya A; Pyle AM
    Nat Struct Biol; 2000 Dec; 7(12):1111-6. PubMed ID: 11101891
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pentamidine inhibits catalytic activity of group I intron Ca.LSU by altering RNA folding.
    Zhang Y; Li Z; Pilch DS; Leibowitz MJ
    Nucleic Acids Res; 2002 Jul; 30(13):2961-71. PubMed ID: 12087182
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Kinetic intermediates in RNA folding.
    Zarrinkar PP; Williamson JR
    Science; 1994 Aug; 265(5174):918-24. PubMed ID: 8052848
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Single-molecule analysis of Mss116-mediated group II intron folding.
    Karunatilaka KS; Solem A; Pyle AM; Rueda D
    Nature; 2010 Oct; 467(7318):935-9. PubMed ID: 20944626
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Catalytic site components common to both splicing steps of a group II intron.
    Chanfreau G; Jacquier A
    Science; 1994 Nov; 266(5189):1383-7. PubMed ID: 7973729
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Single-molecule studies of group II intron ribozymes.
    Steiner M; Karunatilaka KS; Sigel RK; Rueda D
    Proc Natl Acad Sci U S A; 2008 Sep; 105(37):13853-8. PubMed ID: 18772388
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Conversion of a group II intron into a new multiple-turnover ribozyme that selectively cleaves oligonucleotides: elucidation of reaction mechanism and structure/function relationships.
    Michels WJ; Pyle AM
    Biochemistry; 1995 Mar; 34(9):2965-77. PubMed ID: 7893710
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cotranscriptional splicing of a group I intron is facilitated by the Cbp2 protein.
    Lewin AS; Thomas J; Tirupati HK
    Mol Cell Biol; 1995 Dec; 15(12):6971-8. PubMed ID: 8524264
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Interaction of the Neurospora crassa mitochondrial tyrosyl-tRNA synthetase (CYT-18 protein) with the group I intron P4-P6 domain. Thermodynamic analysis and the role of metal ions.
    Caprara MG; Myers CA; Lambowitz AM
    J Mol Biol; 2001 Apr; 308(2):165-90. PubMed ID: 11327760
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mechanistic investigations of a ribozyme derived from the Tetrahymena group I intron: insights into catalysis and the second step of self-splicing.
    Mei R; Herschlag D
    Biochemistry; 1996 May; 35(18):5796-809. PubMed ID: 8639540
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Linking the branchpoint helix to a newly found receptor allows lariat formation by a group II intron.
    Li CF; Costa M; Michel F
    EMBO J; 2011 Jun; 30(15):3040-51. PubMed ID: 21712813
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Kinetics and thermodynamics make different contributions to RNA folding in vitro and in yeast.
    Mahen EM; Harger JW; Calderon EM; Fedor MJ
    Mol Cell; 2005 Jul; 19(1):27-37. PubMed ID: 15989962
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An allosteric-feedback mechanism for protein-assisted group I intron splicing.
    Caprara MG; Chatterjee P; Solem A; Brady-Passerini KL; Kaspar BJ
    RNA; 2007 Feb; 13(2):211-22. PubMed ID: 17164477
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.