BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 18022226)

  • 1. Alendronate-hydroxyapatite nanocomposites and their interaction with osteoclasts and osteoblast-like cells.
    Boanini E; Torricelli P; Gazzano M; Giardino R; Bigi A
    Biomaterials; 2008 Mar; 29(7):790-6. PubMed ID: 18022226
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biofunctional alendronate-Hydroxyapatite thin films deposited by Matrix Assisted Pulsed Laser Evaporation.
    Bigi A; Boanini E; Capuccini C; Fini M; Mihailescu IN; Ristoscu C; Sima F; Torricelli P
    Biomaterials; 2009 Oct; 30(31):6168-77. PubMed ID: 19692118
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction of Sr-doped hydroxyapatite nanocrystals with osteoclast and osteoblast-like cells.
    Capuccini C; Torricelli P; Boanini E; Gazzano M; Giardino R; Bigi A
    J Biomed Mater Res A; 2009 Jun; 89(3):594-600. PubMed ID: 18437694
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of zoledronate-hydroxyapatite nanocomposites on osteoclasts and osteoblast-like cells in vitro.
    Boanini E; Torricelli P; Gazzano M; Fini M; Bigi A
    Biomaterials; 2012 Jan; 33(2):722-30. PubMed ID: 22014461
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanocomposites of hydroxyapatite with aspartic acid and glutamic acid and their interaction with osteoblast-like cells.
    Boanini E; Torricelli P; Gazzano M; Giardino R; Bigi A
    Biomaterials; 2006 Sep; 27(25):4428-33. PubMed ID: 16682075
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alendronate and Pamidronate calcium phosphate bone cements: setting properties and in vitro response of osteoblast and osteoclast cells.
    Panzavolta S; Torricelli P; Bracci B; Fini M; Bigi A
    J Inorg Biochem; 2009 Jan; 103(1):101-6. PubMed ID: 18977031
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Beads of collagen-nanohydroxyapatite composites prepared by a biomimetic process and the effects of their surface texture on cellular behavior in MG63 osteoblast-like cells.
    Tsai SW; Hsu FY; Chen PL
    Acta Biomater; 2008 Sep; 4(5):1332-41. PubMed ID: 18468966
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Osteoblast proliferation and maturation by bisphosphonates.
    Im GI; Qureshi SA; Kenney J; Rubash HE; Shanbhag AS
    Biomaterials; 2004 Aug; 25(18):4105-15. PubMed ID: 15046901
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of alendronate doped calcium phosphates on bone cells activity.
    Boanini E; Torricelli P; Gazzano M; Fini M; Bigi A
    Bone; 2012 Nov; 51(5):944-52. PubMed ID: 22878156
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stimulation of osteoblast responses to biomimetic nanocomposites of gelatin-hydroxyapatite for tissue engineering scaffolds.
    Kim HW; Kim HE; Salih V
    Biomaterials; 2005 Sep; 26(25):5221-30. PubMed ID: 15792549
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The fabrication of nano-hydroxyapatite on PLGA and PLGA/collagen nanofibrous composite scaffolds and their effects in osteoblastic behavior for bone tissue engineering.
    Ngiam M; Liao S; Patil AJ; Cheng Z; Chan CK; Ramakrishna S
    Bone; 2009 Jul; 45(1):4-16. PubMed ID: 19358900
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strontium-substituted hydroxyapatite coatings synthesized by pulsed-laser deposition: in vitro osteoblast and osteoclast response.
    Capuccini C; Torricelli P; Sima F; Boanini E; Ristoscu C; Bracci B; Socol G; Fini M; Mihailescu IN; Bigi A
    Acta Biomater; 2008 Nov; 4(6):1885-93. PubMed ID: 18554996
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and evaluation of collagen-chitosan-hydroxyapatite nanocomposites for bone grafting.
    Wang X; Wang X; Tan Y; Zhang B; Gu Z; Li X
    J Biomed Mater Res A; 2009 Jun; 89(4):1079-87. PubMed ID: 18478560
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanobioengineered electrospun composite nanofibers and osteoblasts for bone regeneration.
    Venugopal JR; Low S; Choon AT; Kumar AB; Ramakrishna S
    Artif Organs; 2008 May; 32(5):388-97. PubMed ID: 18471168
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biologically inspired rosette nanotubes and nanocrystalline hydroxyapatite hydrogel nanocomposites as improved bone substitutes.
    Zhang L; Rodriguez J; Raez J; Myles AJ; Fenniri H; Webster TJ
    Nanotechnology; 2009 Apr; 20(17):175101. PubMed ID: 19420581
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functionalization of biomimetic calcium phosphate bone cements with alendronate.
    Panzavolta S; Torricelli P; Bracci B; Fini M; Bigi A
    J Inorg Biochem; 2010 Oct; 104(10):1099-106. PubMed ID: 20638728
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical performance and osteoblast-like cell responses of fluorine-substituted hydroxyapatite and zirconia dense composite.
    Kim HW; Knowles JC; Li LH; Kim HE
    J Biomed Mater Res A; 2005 Mar; 72(3):258-68. PubMed ID: 15666364
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Suitability evaluation of sol-gel derived Si-substituted hydroxyapatite for dental and maxillofacial applications through in vitro osteoblasts response.
    Balamurugan A; Rebelo AH; Lemos AF; Rocha JH; Ventura JM; Ferreira JM
    Dent Mater; 2008 Oct; 24(10):1374-80. PubMed ID: 18417203
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of hydroxyapatite in citric acid-based nanocomposites: surface characteristics, degradation, and osteogenicity in vitro.
    Chung EJ; Sugimoto MJ; Ameer GA
    Acta Biomater; 2011 Nov; 7(11):4057-63. PubMed ID: 21784176
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biocompatibility evaluation of hydroxyapatite/collagen nanocomposites doped with Zn+2.
    Santos MH; Valerio P; Goes AM; Leite MF; Heneine LG; Mansur HS
    Biomed Mater; 2007 Jun; 2(2):135-41. PubMed ID: 18458447
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.