These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 18022325)

  • 1. Development of the corticospinal tract in Semaphorin3A- and CD24-deficient mice.
    Sibbe M; Taniguchi M; Schachner M; Bartsch U
    Neuroscience; 2007 Dec; 150(4):898-904. PubMed ID: 18022325
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Errors in corticospinal axon guidance in mice lacking the neural cell adhesion molecule L1.
    Cohen NR; Taylor JS; Scott LB; Guillery RW; Soriano P; Furley AJ
    Curr Biol; 1998 Jan; 8(1):26-33. PubMed ID: 9427628
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of specificity in corticospinal connections by axon collaterals branching selectively into appropriate spinal targets.
    Kuang RZ; Kalil K
    J Comp Neurol; 1994 Jun; 344(2):270-82. PubMed ID: 8077461
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pathfinding errors of corticospinal axons in neural cell adhesion molecule-deficient mice.
    Rolf B; Bastmeyer M; Schachner M; Bartsch U
    J Neurosci; 2002 Oct; 22(19):8357-62. PubMed ID: 12351709
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dorsal turning of motor corticospinal axons at the pyramidal decussation requires plexin signaling.
    Faulkner RL; Low LK; Liu XB; Coble J; Jones EG; Cheng HJ
    Neural Dev; 2008 Aug; 3():21. PubMed ID: 18727829
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The neural adhesion molecule TAG-1 modulates responses of sensory axons to diffusible guidance signals.
    Law CO; Kirby RJ; Aghamohammadzadeh S; Furley AJ
    Development; 2008 Aug; 135(14):2361-71. PubMed ID: 18550718
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The development and subsequent elimination of aberrant peripheral axon projections in Semaphorin3A null mutant mice.
    White FA; Behar O
    Dev Biol; 2000 Sep; 225(1):79-86. PubMed ID: 10964465
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of the corticospinal tract in the mouse spinal cord: a quantitative ultrastructural analysis.
    Hsu JY; Stein SA; Xu XM
    Brain Res; 2006 Apr; 1084(1):16-27. PubMed ID: 16616050
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Growth of the corticospinal tract and the development of placing reactions in the postnatal rat.
    Donatelle JM
    J Comp Neurol; 1977 Sep; 175(2):207-31. PubMed ID: 893740
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bilateral corticospinal projections arise from each motor cortex in the macaque monkey: a quantitative study.
    Lacroix S; Havton LA; McKay H; Yang H; Brant A; Roberts J; Tuszynski MH
    J Comp Neurol; 2004 May; 473(2):147-61. PubMed ID: 15101086
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Skilled Movements in Mice Require Inhibition of Corticospinal Axon Collateral Formation in the Spinal Cord by Semaphorin Signaling.
    Gu Z; Ueno M; Klinefelter K; Mamidi M; Yagi T; Yoshida Y
    J Neurosci; 2019 Nov; 39(45):8885-8899. PubMed ID: 31537704
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Loss of neural recognition molecule NB-3 delays the normal projection and terminal branching of developing corticospinal tract axons in the mouse.
    Huang Z; Yu Y; Shimoda Y; Watanabe K; Liu Y
    J Comp Neurol; 2012 Apr; 520(6):1227-45. PubMed ID: 21935948
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Corticospinal projection patterns following unilateral section of the cervical spinal cord in the newborn and juvenile macaque monkey.
    Galea MP; Darian-Smith I
    J Comp Neurol; 1997 May; 381(3):282-306. PubMed ID: 9133569
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Axon Fasciculation, Mediated by Transmembrane Semaphorins, Is Critical for the Establishment of Segmental Specificity of Corticospinal Circuits.
    Gu Z; Matsuura K; Letelier A; Basista M; Craig C; Imai F; Yoshida Y
    J Neurosci; 2023 Aug; 43(32):5753-5768. PubMed ID: 37344234
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Abnormal growth of the corticospinal axons into the lumbar spinal cord of the hyt/hyt mouse with congenital hypothyroidism.
    Hsu JY; Stein SA; Xu XM
    J Neurosci Res; 2008 Nov; 86(14):3126-39. PubMed ID: 18543337
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Semaphorin3A regulates axon growth independently of growth cone repulsion via modulation of TrkA signaling.
    Ben-Zvi A; Ben-Gigi L; Yagil Z; Lerman O; Behar O
    Cell Signal; 2008 Mar; 20(3):467-79. PubMed ID: 18096366
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Astrocytes and guidance of outgrowing corticospinal tract axons in the rat. An immunocytochemical study using anti-vimentin and anti-glial fibrillary acidic protein.
    Joosten EA; Gribnau AA
    Neuroscience; 1989; 31(2):439-52. PubMed ID: 2797445
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rac1 in cortical projection neurons is selectively required for midline crossing of commissural axonal formation.
    Kassai H; Terashima T; Fukaya M; Nakao K; Sakahara M; Watanabe M; Aiba A
    Eur J Neurosci; 2008 Jul; 28(2):257-67. PubMed ID: 18702697
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Postnatal Development of the Corticospinal Tract in the Reeler Mouse.
    Namikawa T; Kikkawa S; Inokuchi G; Terashima T
    Kobe J Med Sci; 2015 Dec; 61(3):E71-81. PubMed ID: 27323786
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transgenic labeling of the corticospinal tract for monitoring axonal responses to spinal cord injury.
    Bareyre FM; Kerschensteiner M; Misgeld T; Sanes JR
    Nat Med; 2005 Dec; 11(12):1355-60. PubMed ID: 16286922
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.