These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
320 related articles for article (PubMed ID: 18022670)
1. Influence of clay minerals on the reduction of Cr6+ by citric acid. Lan Y; Li C; Mao J; Sun J Chemosphere; 2008 Mar; 71(4):781-7. PubMed ID: 18022670 [TBL] [Abstract][Full Text] [Related]
2. Fe(III) photocatalytic reduction of Cr(VI) by low-molecular-weight organic acids with alpha-OH. Sun J; Mao JD; Gong H; Lan Y J Hazard Mater; 2009 Sep; 168(2-3):1569-74. PubMed ID: 19372002 [TBL] [Abstract][Full Text] [Related]
3. Manganese(II)-catalyzed and clay-minerals-mediated reduction of chromium(VI) by citrate. Sarkar B; Naidu R; Krishnamurti GS; Megharaj M Environ Sci Technol; 2013; 47(23):13629-36. PubMed ID: 24195488 [TBL] [Abstract][Full Text] [Related]
4. Surface binding site analysis of Ca2+-homoionized clay-humic acid complexes. Martinez RE; Sharma P; Kappler A J Colloid Interface Sci; 2010 Dec; 352(2):526-34. PubMed ID: 20864115 [TBL] [Abstract][Full Text] [Related]
5. Influence of clay mineral structure and surfactant nature on the adsorption capacity of surfactants by clays. Sánchez-Martín MJ; Dorado MC; del Hoyo C; Rodríguez-Cruz MS J Hazard Mater; 2008 Jan; 150(1):115-23. PubMed ID: 17532126 [TBL] [Abstract][Full Text] [Related]
6. Influence of complex reagents on removal of chromium(VI) by zero-valent iron. Zhou H; He Y; Lan Y; Mao J; Chen S Chemosphere; 2008 Jun; 72(6):870-4. PubMed ID: 18486963 [TBL] [Abstract][Full Text] [Related]
7. Microbial reduction of structural iron in interstratified illite-smectite minerals by a sulfate-reducing bacterium. Liu D; Dong H; Bishop ME; Zhang J; Wang H; Xie S; Wang S; Huang L; Eberl DD Geobiology; 2012 Mar; 10(2):150-62. PubMed ID: 22074236 [TBL] [Abstract][Full Text] [Related]
8. Preferential adsorption of extracellular polymeric substances from bacteria on clay minerals and iron oxide. Cao Y; Wei X; Cai P; Huang Q; Rong X; Liang W Colloids Surf B Biointerfaces; 2011 Mar; 83(1):122-7. PubMed ID: 21130614 [TBL] [Abstract][Full Text] [Related]
9. Effects of clay minerals on Cr(VI) reduction by organic compounds. Deng B; Lan L; Houston K; Brady PV Environ Monit Assess; 2003 May; 84(1-2):5-18. PubMed ID: 12733805 [TBL] [Abstract][Full Text] [Related]
10. Adsorption of dicarboxylic acids by clay minerals as examined by in situ ATR-FTIR and ex situ DRIFT. Kang S; Xing B Langmuir; 2007 Jun; 23(13):7024-31. PubMed ID: 17508766 [TBL] [Abstract][Full Text] [Related]
11. Sorption and immobilization of cellulase on silicate clay minerals. Safari Sinegani AA; Emtiazi G; Shariatmadari H J Colloid Interface Sci; 2005 Oct; 290(1):39-44. PubMed ID: 15961096 [TBL] [Abstract][Full Text] [Related]
12. Adsorption of Pseudomonas putida on clay minerals and iron oxide. Jiang D; Huang Q; Cai P; Rong X; Chen W Colloids Surf B Biointerfaces; 2007 Feb; 54(2):217-21. PubMed ID: 17142018 [TBL] [Abstract][Full Text] [Related]
13. Kinetics and Products of Chromium(VI) Reduction by Iron(II/III)-Bearing Clay Minerals. Joe-Wong C; Brown GE; Maher K Environ Sci Technol; 2017 Sep; 51(17):9817-9825. PubMed ID: 28783317 [TBL] [Abstract][Full Text] [Related]
14. Sb(III) and Sb(V) sorption onto Al-rich phases: hydrous Al oxide and the clay minerals kaolinite KGa-1b and oxidized and reduced nontronite NAu-1. Ilgen AG; Trainor TP Environ Sci Technol; 2012 Jan; 46(2):843-51. PubMed ID: 22136137 [TBL] [Abstract][Full Text] [Related]
15. Adsorption of hydrogen gas and redox processes in clays. Didier M; Leone L; Greneche JM; Giffaut E; Charlet L Environ Sci Technol; 2012 Mar; 46(6):3574-9. PubMed ID: 22352351 [TBL] [Abstract][Full Text] [Related]
16. Adsorption of iron cyanide complexes onto clay minerals, manganese oxide, and soil. Kang DH; Schwab AP; Johnston CT; Banks MK J Environ Sci Health A Tox Hazard Subst Environ Eng; 2010 Sep; 45(11):1391-6. PubMed ID: 20665323 [TBL] [Abstract][Full Text] [Related]
17. Electromigration of Mn, Fe, Cu and Zn with citric acid in contaminated clay. Pazos M; Gouveia S; Sanroman MA; Cameselle C J Environ Sci Health A Tox Hazard Subst Environ Eng; 2008 Jul; 43(8):823-31. PubMed ID: 18569291 [TBL] [Abstract][Full Text] [Related]
18. Oxygen evolving reactions catalysed by manganese-oxo-complexes adsorbed on clays. Kurz P Dalton Trans; 2009 Aug; (31):6103-8. PubMed ID: 20449104 [TBL] [Abstract][Full Text] [Related]
19. Bioavailability of methyl parathion adsorbed on clay minerals and iron oxide. Cai P; He X; Xue A; Chen H; Huang Q; Yu J; Rong X; Liang W J Hazard Mater; 2011 Jan; 185(2-3):1032-6. PubMed ID: 21035256 [TBL] [Abstract][Full Text] [Related]
20. Catalytic activity of hammerhead ribozymes in a clay mineral environment: implications for the RNA world. Biondi E; Branciamore S; Fusi L; Gago S; Gallori E Gene; 2007 Mar; 389(1):10-8. PubMed ID: 17125938 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]