BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 18022740)

  • 1. Effects of broadleaf woodland cover on streamwater chemistry and risk assessments of streamwater acidification in acid-sensitive catchments in the UK.
    Gagkas Z; Heal KV; Stuart N; Nisbet TR
    Environ Pollut; 2008 Jul; 154(2):232-40. PubMed ID: 18022740
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of broadleaf woodland on aluminium speciation in stream water in an acid-sensitive area in the UK.
    Ryan JL; Lynam P; Heal KV; Palmer SM
    Sci Total Environ; 2012 Nov; 439():321-31. PubMed ID: 23085669
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of different critical load approaches for assessing streamwater acid-sensitivity to broadleaf woodland expansion.
    Gagkas Z; Heal KV; Nisbet TR; Stuart N
    Sci Total Environ; 2010 Feb; 408(6):1235-44. PubMed ID: 20071010
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Afforestation, seasalt episodes and acidification--a paired catchment study in western Norway.
    Larssen T; Holme J
    Environ Pollut; 2006 Feb; 139(3):440-50. PubMed ID: 16129529
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trends in surface water chemistry in afforested Welsh catchments recovering from acidification, 1991-2012.
    Broadmeadow SB; Nisbet TR; Forster J
    Environ Pollut; 2019 Apr; 247():27-38. PubMed ID: 30654251
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulating the long-term chemistry of an upland UK catchment: major solutes and acidification.
    Tipping E; Lawlor AJ; Lofts S
    Environ Pollut; 2006 May; 141(1):151-66. PubMed ID: 16236408
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Long-term changes in aluminum fractions of drainage waters in two forest catchments with contrasting lithology.
    Krám P; Hruska J; Driscoll CT; Johnson CE; Oulehle F
    J Inorg Biochem; 2009 Nov; 103(11):1465-72. PubMed ID: 19748678
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sulphate, nitrogen and base cation budgets at 21 forested catchments in Canada, the United States and Europe.
    Watmough SA; Aherne J; Alewell C; Arp P; Bailey S; Clair T; Dillon P; Duchesne L; Eimers C; Fernandez I; Foster N; Larssen T; Miller E; Mitchell M; Page S
    Environ Monit Assess; 2005 Oct; 109(1-3):1-36. PubMed ID: 16240186
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recovery from acidification in the Tillingbourne catchment, southern England: catchment description and preliminary results.
    Hill TJ; Skeffington RA; Whitehead PG
    Sci Total Environ; 2002 Jan; 282-283():81-97. PubMed ID: 11846088
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluating stream water quality through land use analysis in two grassland catchments: impact of wetlands on stream nitrogen concentration.
    Hayakawa A; Shimizu M; Woli KP; Kuramochi K; Hatano R
    J Environ Qual; 2006; 35(2):617-27. PubMed ID: 16510707
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dilution and the elusive baseline.
    Likens GE; Buso DC
    Environ Sci Technol; 2012 Apr; 46(8):4382-7. PubMed ID: 22455659
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time series of long-term annual fluxes in the streamwater of nine forest catchments from the Swedish environmental monitoring program (PMK 5).
    Fölster J; Bishop K; Krám P; Kvarnäs H; Wilander A
    Sci Total Environ; 2003 Jul; 310(1-3):113-20. PubMed ID: 12812735
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Trends in hydrometeorological conditions and stream water organic carbon in boreal forested catchments.
    Sarkkola S; Koivusalo H; Laurén A; Kortelainen P; Mattsson T; Palviainen M; Piirainen S; Starr M; Finér L
    Sci Total Environ; 2009 Dec; 408(1):92-101. PubMed ID: 19819522
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nitrate concentrations in river waters of the upper Thames and its tributaries.
    Neal C; Jarvie HP; Neal M; Hill L; Wickham H
    Sci Total Environ; 2006 Jul; 365(1-3):15-32. PubMed ID: 16618496
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The response of soil and stream chemistry to decreases in acid deposition in the Catskill Mountains, New York, USA.
    McHale MR; Burns DA; Siemion J; Antidormi MR
    Environ Pollut; 2017 Oct; 229():607-620. PubMed ID: 28689149
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The sources of streamwater to small mountainous rivers in Taiwan during typhoon and non-typhoon seasons.
    Lee TY; Hong NM; Shih YT; Huang JC; Kao SJ
    Environ Sci Pollut Res Int; 2017 Dec; 24(35):26940-26957. PubMed ID: 26282440
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contrasting chemical response to artificial acidification of three acid-sensitive streams in Maine, USA.
    Goss HV; Norton SA
    Sci Total Environ; 2008 Oct; 404(2-3):245-52. PubMed ID: 18440052
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A linked spatial and temporal model of the chemical and biological status of a large, acid-sensitive river network.
    Evans CD; Cooper DM; Juggins S; Jenkins A; Norris D
    Sci Total Environ; 2006 Jul; 365(1-3):167-85. PubMed ID: 16580046
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial variation of streamwater chemistry in two Swedish boreal catchments: implications for environmental assessment.
    Temnerud J; Bishop K
    Environ Sci Technol; 2005 Mar; 39(6):1463-9. PubMed ID: 15819198
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantifying the effects of forestry practices on the recovery of upland streams and lochs from acidification.
    Harriman R; Watt AW; Christie AE; Moore DW; McCartney AG; Taylor EM
    Sci Total Environ; 2003 Jul; 310(1-3):101-11. PubMed ID: 12812734
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.