These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 18022800)
1. The effect of different surface morphology and roughness on osteoblast-like cells. Ball M; Grant DM; Lo WJ; Scotchford CA J Biomed Mater Res A; 2008 Sep; 86(3):637-47. PubMed ID: 18022800 [TBL] [Abstract][Full Text] [Related]
2. Integrin alpha(5) controls osteoblastic proliferation and differentiation responses to titanium substrates presenting different roughness characteristics in a roughness independent manner. Keselowsky BG; Wang L; Schwartz Z; Garcia AJ; Boyan BD J Biomed Mater Res A; 2007 Mar; 80(3):700-10. PubMed ID: 17133443 [TBL] [Abstract][Full Text] [Related]
3. Effect of three distinct treatments of titanium surface on osteoblast attachment, proliferation, and differentiation. Sader MS; Balduino A; Soares Gde A; Borojevic R Clin Oral Implants Res; 2005 Dec; 16(6):667-75. PubMed ID: 16307573 [TBL] [Abstract][Full Text] [Related]
5. Thermal oxidation enhances early interactions between human osteoblasts and alumina blasted Ti6Al4V alloy. Saldaña L; Barranco V; González-Carrasco JL; Rodríguez M; Munuera L; Vilaboa N J Biomed Mater Res A; 2007 May; 81(2):334-46. PubMed ID: 17120220 [TBL] [Abstract][Full Text] [Related]
6. Activation of phospholipase D1 by surface roughness of titanium in MG63 osteoblast-like cell. Kim MJ; Choi MU; Kim CW Biomaterials; 2006 Nov; 27(32):5502-11. PubMed ID: 16857255 [TBL] [Abstract][Full Text] [Related]
7. Effect of recombinant human bone morphogenetic protein-7 (rhBMP-7) on the viability, proliferation and differentiation of osteoblast-like cells cultured on a chemically modified titanium surface. Togashi AY; Cirano FR; Marques MM; Pustiglioni FE; Lang NP; Lima LA Clin Oral Implants Res; 2009 May; 20(5):452-7. PubMed ID: 19250243 [TBL] [Abstract][Full Text] [Related]
8. Effect of transforming growth factor-beta on osteoblast cells cultured on 3 different hydroxyapatite surfaces. Ong JL; Carnes DL; Sogal A Int J Oral Maxillofac Implants; 1999; 14(2):217-25. PubMed ID: 10212538 [TBL] [Abstract][Full Text] [Related]
9. Osteoblastic cell behaviour on different titanium implant surfaces. Le Guehennec L; Lopez-Heredia MA; Enkel B; Weiss P; Amouriq Y; Layrolle P Acta Biomater; 2008 May; 4(3):535-43. PubMed ID: 18226985 [TBL] [Abstract][Full Text] [Related]
10. The influence of titanium surfaces in cultures of neonatal rat calvarial osteoblast-like cells: an immunohistochemical study. Aybar B; Emes Y; Atalay B; Tanrikulu S; Kaya AS; Işsever H; Ceyhan T; Bilir A Implant Dent; 2009 Feb; 18(1):75-85. PubMed ID: 19212240 [TBL] [Abstract][Full Text] [Related]
11. Bone formation on apatite-coated titanium incorporated with bone morphogenetic protein and heparin. Kodama T; Goto T; Miyazaki T; Takahashi T Int J Oral Maxillofac Implants; 2008; 23(6):1013-9. PubMed ID: 19216269 [TBL] [Abstract][Full Text] [Related]
12. The in vitro response of human osteoblasts to polyetheretherketone (PEEK) substrates compared to commercially pure titanium. Sagomonyants KB; Jarman-Smith ML; Devine JN; Aronow MS; Gronowicz GA Biomaterials; 2008 Apr; 29(11):1563-72. PubMed ID: 18199478 [TBL] [Abstract][Full Text] [Related]
13. Behavior of two osteoblast-like cell lines cultured on machined or rough titanium surfaces. Shapira L; Halabi A Clin Oral Implants Res; 2009 Jan; 20(1):50-5. PubMed ID: 19126108 [TBL] [Abstract][Full Text] [Related]
14. An in vitro comparison of possibly bioactive titanium implant surfaces. Göransson A; Arvidsson A; Currie F; Franke-Stenport V; Kjellin P; Mustafa K; Sul YT; Wennerberg A J Biomed Mater Res A; 2009 Mar; 88(4):1037-47. PubMed ID: 18404711 [TBL] [Abstract][Full Text] [Related]
15. Change in surface roughness by dynamic shape-memory acrylate networks enhances osteoblast differentiation. Lee EM; Smith K; Gall K; Boyan BD; Schwartz Z Biomaterials; 2016 Dec; 110():34-44. PubMed ID: 27710831 [TBL] [Abstract][Full Text] [Related]
16. Sol-gel-modified titanium with hydroxyapatite thin films and effect on osteoblast-like cell responses. Kim HW; Kim HE; Salih V; Knowles JC J Biomed Mater Res A; 2005 Sep; 74(3):294-305. PubMed ID: 16013054 [TBL] [Abstract][Full Text] [Related]
17. Enhanced osteoblast response to an equal channel angular pressing-processed pure titanium substrate with microrough surface topography. Park JW; Kim YJ; Park CH; Lee DH; Ko YG; Jang JH; Lee CS Acta Biomater; 2009 Oct; 5(8):3272-80. PubMed ID: 19426841 [TBL] [Abstract][Full Text] [Related]
18. The significance of crystallographic texture of titanium alloy substrates on pre-osteoblast responses. Faghihi S; Azari F; Li H; Bateni MR; Szpunar JA; Vali H; Tabrizian M Biomaterials; 2006 Jul; 27(19):3532-9. PubMed ID: 16545866 [TBL] [Abstract][Full Text] [Related]
19. In vitro biocompatibility of hydroxyapatite-reinforced polymeric composites manufactured by selective laser sintering. Zhang Y; Hao L; Savalani MM; Harris RA; Di Silvio L; Tanner KE J Biomed Mater Res A; 2009 Dec; 91(4):1018-27. PubMed ID: 19107791 [TBL] [Abstract][Full Text] [Related]
20. Quantitative analysis of osteoblast behavior on microgrooved hydroxyapatite and titanium substrata. Lu X; Leng Y J Biomed Mater Res A; 2003 Sep; 66(3):677-87. PubMed ID: 12918052 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]