These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 18022818)

  • 1. Molecular mechanisms of p21 and p27 induction by 3-methylcholanthrene, an aryl-hydrocarbon receptor agonist, involved in antiproliferation of human umbilical vascular endothelial cells.
    Pang PH; Lin YH; Lee YH; Hou HH; Hsu SP; Juan SH
    J Cell Physiol; 2008 Apr; 215(1):161-71. PubMed ID: 18022818
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RhoA-mediated inhibition of vascular endothelial cell mobility: positive feedback through reduced cytosolic p21 and p27.
    Hsu YH; Chang CC; Yang NJ; Lee YH; Juan SH
    J Cell Physiol; 2014 Oct; 229(10):1455-65. PubMed ID: 24535918
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aryl hydrocarbon receptor mediates laminar fluid shear stress-induced CYP1A1 activation and cell cycle arrest in vascular endothelial cells.
    Han Z; Miwa Y; Obikane H; Mitsumata M; Takahashi-Yanaga F; Morimoto S; Sasaguri T
    Cardiovasc Res; 2008 Mar; 77(4):809-18. PubMed ID: 18065768
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antiproliferative and antiangiogenic effects of 3-methylcholanthrene, an aryl-hydrocarbon receptor agonist, in human umbilical vascular endothelial cells.
    Juan SH; Lee JL; Ho PY; Lee YH; Lee WS
    Eur J Pharmacol; 2006 Jan; 530(1-2):1-8. PubMed ID: 16359657
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aryl-hydrocarbon receptor-dependent alteration of FAK/RhoA in the inhibition of HUVEC motility by 3-methylcholanthrene.
    Chang CC; Tsai SY; Lin H; Li HF; Lee YH; Chou Y; Jen CY; Juan SH
    Cell Mol Life Sci; 2009 Oct; 66(19):3193-205. PubMed ID: 19649566
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3-Methylcholanthrene, an AhR agonist, caused cell-cycle arrest by histone deacetylation through a RhoA-dependent recruitment of HDAC1 and pRb2 to E2F1 complex.
    Chang CC; Sue YM; Yang NJ; Lee YH; Juan SH
    PLoS One; 2014; 9(3):e92793. PubMed ID: 24658119
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aryl hydrocarbon receptor-independent activation of estrogen receptor-dependent transcription by 3-methylcholanthrene.
    Shipley JM; Waxman DJ
    Toxicol Appl Pharmacol; 2006 Jun; 213(2):87-97. PubMed ID: 16257430
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3-Methylcholanthrene and other aryl hydrocarbon receptor agonists directly activate estrogen receptor alpha.
    Abdelrahim M; Ariazi E; Kim K; Khan S; Barhoumi R; Burghardt R; Liu S; Hill D; Finnell R; Wlodarczyk B; Jordan VC; Safe S
    Cancer Res; 2006 Feb; 66(4):2459-67. PubMed ID: 16489053
    [TBL] [Abstract][Full Text] [Related]  

  • 9. TSU-16, (Z)-3-[(2,4-dimethylpyrrol-5-yl)methylidenyl]-2-indolinone, is a potent activator of aryl hydrocarbon receptor and increases CYP1A1 and CYP1A2 expression in human hepatocytes.
    Matsuoka-Kawano K; Yoshinari K; Nagayama S; Yamazoe Y
    Chem Biol Interact; 2010 Apr; 185(1):33-41. PubMed ID: 20171196
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mediating effects of aryl-hydrocarbon receptor and RhoA in altering brain vascular integrity: the therapeutic potential of statins.
    Chang CC; Lee PS; Chou Y; Hwang LL; Juan SH
    Am J Pathol; 2012 Jul; 181(1):211-21. PubMed ID: 22720799
    [TBL] [Abstract][Full Text] [Related]  

  • 11. AHR and GPER mediate the stimulatory effects induced by 3-methylcholanthrene in breast cancer cells and cancer-associated fibroblasts (CAFs).
    Cirillo F; Lappano R; Bruno L; Rizzuti B; Grande F; Guzzi R; Briguori S; Miglietta AM; Nakajima M; Di Martino MT; Maggiolini M
    J Exp Clin Cancer Res; 2019 Aug; 38(1):335. PubMed ID: 31370872
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activation of the aryl hydrocarbon receptor induces hepatic steatosis via the upregulation of fatty acid transport.
    Kawano Y; Nishiumi S; Tanaka S; Nobutani K; Miki A; Yano Y; Seo Y; Kutsumi H; Ashida H; Azuma T; Yoshida M
    Arch Biochem Biophys; 2010 Dec; 504(2):221-7. PubMed ID: 20831858
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ah receptor-mediated suppression of liver regeneration through NC-XRE-driven p21Cip1 expression.
    Jackson DP; Li H; Mitchell KA; Joshi AD; Elferink CJ
    Mol Pharmacol; 2014 Apr; 85(4):533-41. PubMed ID: 24431146
    [TBL] [Abstract][Full Text] [Related]  

  • 14. p27-Associated G1 arrest induced by hinokitiol in human malignant melanoma cells is mediated via down-regulation of pRb, Skp2 ubiquitin ligase, and impairment of Cdk2 function.
    Liu S; Yamauchi H
    Cancer Lett; 2009 Dec; 286(2):240-9. PubMed ID: 19631451
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PPARdelta-mediated p21/p27 induction via increased CREB-binding protein nuclear translocation in beraprost-induced antiproliferation of murine aortic smooth muscle cells.
    Sue YM; Chung CP; Lin H; Chou Y; Jen CY; Li HF; Chang CC; Juan SH
    Am J Physiol Cell Physiol; 2009 Aug; 297(2):C321-9. PubMed ID: 19587222
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of vascular smooth muscle cell growth by magnesium-role of mitogen-activated protein kinases.
    Touyz RM; Yao G
    J Cell Physiol; 2003 Dec; 197(3):326-35. PubMed ID: 14566962
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vorinostat enhances protein stability of p27 and p21 through negative regulation of Skp2 and Cks1 in human breast cancer cells.
    Uehara N; Yoshizawa K; Tsubura A
    Oncol Rep; 2012 Jul; 28(1):105-10. PubMed ID: 22484732
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Focal adhesion kinase controls cellular levels of p27/Kip1 and p21/Cip1 through Skp2-dependent and -independent mechanisms.
    Bryant P; Zheng Q; Pumiglia K
    Mol Cell Biol; 2006 Jun; 26(11):4201-13. PubMed ID: 16705171
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aryl hydrocarbon receptor-dependent regulation of miR-196a expression controls lung fibroblast apoptosis but not proliferation.
    Hecht E; Zago M; Sarill M; Rico de Souza A; Gomez A; Matthews J; Hamid Q; Eidelman DH; Baglole CJ
    Toxicol Appl Pharmacol; 2014 Nov; 280(3):511-25. PubMed ID: 25178717
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms involved in resveratrol-induced apoptosis and cell cycle arrest in prostate cancer-derived cell lines.
    Benitez DA; Pozo-Guisado E; Alvarez-Barrientos A; Fernandez-Salguero PM; Castellón EA
    J Androl; 2007; 28(2):282-93. PubMed ID: 17050787
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.