These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 18022837)

  • 1. Fatigue strength of human cortical bone: age, physical, and material heterogeneity effects.
    Zioupos P; Gresle M; Winwood K
    J Biomed Mater Res A; 2008 Sep; 86(3):627-36. PubMed ID: 18022837
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo fatigue microcracks in human bone: material properties of the surrounding bone matrix.
    Zioupos P
    Eur J Morphol; 2005; 42(1-2):31-41. PubMed ID: 16123022
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of cortical bone and its microstructure in bone strength.
    Augat P; Schorlemmer S
    Age Ageing; 2006 Sep; 35 Suppl 2():ii27-ii31. PubMed ID: 16926200
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of collagen fiber orientation and other histocompositional characteristics on the mechanical properties of equine cortical bone.
    Skedros JG; Dayton MR; Sybrowsky CL; Bloebaum RD; Bachus KN
    J Exp Biol; 2006 Aug; 209(Pt 15):3025-42. PubMed ID: 16857886
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differences in osteonal micromorphology between tensile and compressive cortices of a bending skeletal system: indications of potential strain-specific differences in bone microstructure.
    Skedros JG; Mason MW; Bloebaum RD
    Anat Rec; 1994 Aug; 239(4):405-13. PubMed ID: 7978364
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Age, gender, and bone lamellae elastic moduli.
    Hoffler CE; Moore KE; Kozloff K; Zysset PK; Goldstein SA
    J Orthop Res; 2000 May; 18(3):432-7. PubMed ID: 10937630
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Micromechanics fracture in osteonal cortical bone: a study of the interactions between microcrack propagation, microstructure and the material properties.
    Najafi AR; Arshi AR; Eslami MR; Fariborz S; Moeinzadeh MH
    J Biomech; 2007; 40(12):2788-95. PubMed ID: 17376454
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of cortical bone elastic constants by a two-level micromechanical model using a generalized self-consistent method.
    Dong XN; Guo XE
    J Biomech Eng; 2006 Jun; 128(3):309-16. PubMed ID: 16706580
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The dependence of transversely isotropic elasticity of human femoral cortical bone on porosity.
    Dong XN; Guo XE
    J Biomech; 2004 Aug; 37(8):1281-7. PubMed ID: 15212934
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fracture toughness of human femoral neck: effect of microstructure, composition, and age.
    Yeni YN; Norman TL
    Bone; 2000 May; 26(5):499-504. PubMed ID: 10773590
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The importance of the elastic and plastic components of strain in tensile and compressive fatigue of human cortical bone in relation to orthopaedic biomechanics.
    Winwood K; Zioupos P; Currey JD; Cotton JR; Taylor M
    J Musculoskelet Neuronal Interact; 2006; 6(2):134-41. PubMed ID: 16849822
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interfacial strength of cement lines in human cortical bone.
    Dong XN; Zhang X; Guo XE
    Mech Chem Biosyst; 2005 Jun; 2(2):63-8. PubMed ID: 16783927
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The degree and distribution of cortical bone mineralization in the human femoral shaft change with age and sex in a microradiographic study.
    Bergot C; Wu Y; Jolivet E; Zhou LQ; Laredo JD; Bousson V
    Bone; 2009 Sep; 45(3):435-42. PubMed ID: 19501681
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accumulation of in-vivo fatigue microdamage and its relation to biomechanical properties in ageing human cortical bone.
    Zioupos P
    J Microsc; 2001 Feb; 201(Pt 2):270-8. PubMed ID: 11430140
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo linear microcracks of human femoral cortical bone remain parallel to osteons during aging.
    Wasserman N; Brydges B; Searles S; Akkus O
    Bone; 2008 Nov; 43(5):856-61. PubMed ID: 18708177
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The behaviour of microcracks in compact bone.
    O'brien FJ; Hardiman DA; Hazenberg JG; Mercy MV; Mohsin S; Taylor D; Lee TC
    Eur J Morphol; 2005; 42(1-2):71-9. PubMed ID: 16123026
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A fiber-ceramic matrix composite material model for osteonal cortical bone fracture micromechanics: solution of arbitrary microcracks interaction.
    Raeisi Najafi A; Arshi AR; Saffar KP; Eslami MR; Fariborz S; Moeinzadeh MH
    J Mech Behav Biomed Mater; 2009 Jul; 2(3):217-23. PubMed ID: 19627826
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-scale characterization of swine femoral cortical bone.
    Feng L; Jasiuk I
    J Biomech; 2011 Jan; 44(2):313-20. PubMed ID: 21040922
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The tensile strength of black bear (Ursus americanus) cortical bone is not compromised with aging despite annual periods of hibernation.
    Harvey KB; Drummer TD; Donahue SW
    J Biomech; 2005 Nov; 38(11):2143-50. PubMed ID: 16115638
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Do microcracks decrease or increase fatigue resistance in cortical bone?
    Sobelman OS; Gibeling JC; Stover SM; Hazelwood SJ; Yeh OC; Shelton DR; Martin RB
    J Biomech; 2004 Sep; 37(9):1295-303. PubMed ID: 15275836
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.