BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

321 related articles for article (PubMed ID: 18022838)

  • 1. Characterization and dynamic mechanical analysis of selective laser sintered hydroxyapatite-filled polymeric composites.
    Zhang Y; Hao L; Savalani MM; Harris RA; Tanner KE
    J Biomed Mater Res A; 2008 Sep; 86(3):607-16. PubMed ID: 18022838
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro biocompatibility of hydroxyapatite-reinforced polymeric composites manufactured by selective laser sintering.
    Zhang Y; Hao L; Savalani MM; Harris RA; Di Silvio L; Tanner KE
    J Biomed Mater Res A; 2009 Dec; 91(4):1018-27. PubMed ID: 19107791
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selective laser sintering of hydroxyapatite reinforced polyethylene composites for bioactive implants and tissue scaffold development.
    Hao L; Savalani MM; Zhang Y; Tanner KE; Harris RA
    Proc Inst Mech Eng H; 2006 May; 220(4):521-31. PubMed ID: 16808068
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of dispersant concentration on the pore morphology of hydroxyapatite ceramics for bone tissue engineering.
    Cyster LA; Grant DM; Howdle SM; Rose FR; Irvine DJ; Freeman D; Scotchford CA; Shakesheff KM
    Biomaterials; 2005 Mar; 26(7):697-702. PubMed ID: 15350773
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The fabrication and characterization of biodegradable HA/PHBV nanoparticle-polymer composite scaffolds.
    Jack KS; Velayudhan S; Luckman P; Trau M; Grøndahl L; Cooper-White J
    Acta Biomater; 2009 Sep; 5(7):2657-67. PubMed ID: 19375396
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A study on improving mechanical properties of porous HA tissue engineering scaffolds by hot isostatic pressing.
    Zhao J; Xiao S; Lu X; Wang J; Weng J
    Biomed Mater; 2006 Dec; 1(4):188-92. PubMed ID: 18458404
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of 13-93 bioactive glass scaffolds for bone tissue engineering using indirect selective laser sintering.
    Kolan KC; Leu MC; Hilmas GE; Brown RF; Velez M
    Biofabrication; 2011 Jun; 3(2):025004. PubMed ID: 21636879
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Poly-epsilon-caprolactone/hydroxyapatite for tissue engineering scaffold fabrication via selective laser sintering.
    Wiria FE; Leong KF; Chua CK; Liu Y
    Acta Biomater; 2007 Jan; 3(1):1-12. PubMed ID: 17055789
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving mechanical and biological properties of macroporous HA scaffolds through composite coatings.
    Zhao J; Lu X; Duan K; Guo LY; Zhou SB; Weng J
    Colloids Surf B Biointerfaces; 2009 Nov; 74(1):159-66. PubMed ID: 19679453
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective laser sintering of biocompatible polymers for applications in tissue engineering.
    Tan KH; Chua CK; Leong KF; Cheah CM; Gui WS; Tan WS; Wiria FE
    Biomed Mater Eng; 2005; 15(1-2):113-24. PubMed ID: 15623935
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical properties of hydroxyapatite whisker reinforced polyetherketoneketone composite scaffolds.
    Converse GL; Conrad TL; Roeder RK
    J Mech Behav Biomed Mater; 2009 Dec; 2(6):627-35. PubMed ID: 19716108
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization of the configuration of porous bone scaffolds made of Polyamide/Hydroxyapatite composites using Selective Laser Sintering for tissue engineering applications.
    Ramu M; Ananthasubramanian M; Kumaresan T; Gandhinathan R; Jothi S
    Biomed Mater Eng; 2018; 29(6):739-755. PubMed ID: 30282331
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of material, process parameters, and simulated body fluids on mechanical properties of 13-93 bioactive glass porous constructs made by selective laser sintering.
    Kolan KC; Leu MC; Hilmas GE; Velez M
    J Mech Behav Biomed Mater; 2012 Sep; 13():14-24. PubMed ID: 22842272
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioactive glass-based composites for the production of dense sintered bodies and porous scaffolds.
    Bellucci D; Sola A; Cannillo V
    Mater Sci Eng C Mater Biol Appl; 2013 May; 33(4):2138-51. PubMed ID: 23498242
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Porous hydroxyapatite/gelatine scaffolds with ice-designed channel-like porosity for biomedical applications.
    Landi E; Valentini F; Tampieri A
    Acta Biomater; 2008 Nov; 4(6):1620-6. PubMed ID: 18579459
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of sintering on porosity, phase, and surface morphology of spray dried hydroxyapatite microspheres.
    Wang AJ; Lu YP; Zhu RF; Li ST; Xiao GY; Zhao GF; Xu WH
    J Biomed Mater Res A; 2008 Nov; 87(2):557-62. PubMed ID: 18306315
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of porous glass-ceramic fillers on mechanical properties of light-cured dental resin composites.
    Liu Y; Tan Y; Lei T; Xiang Q; Han Y; Huang B
    Dent Mater; 2009 Jun; 25(6):709-15. PubMed ID: 19131096
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Processing of hydroxyapatite reinforced ultrahigh molecular weight polyethylene for biomedical applications.
    Fang L; Leng Y; Gao P
    Biomaterials; 2005 Jun; 26(17):3471-8. PubMed ID: 15621236
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-joining of zirconia/hydroxyapatite composites using plastic deformation process.
    Singh D; de la Cinta Lorenzo-Martin M; Gutiérrez-Mora F; Routbort JL; Case ED
    Acta Biomater; 2006 Nov; 2(6):669-75. PubMed ID: 16935578
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermal sprayed hydroxyapatite splats: nanostructures, pore formation mechanisms and TEM characterization.
    Li H; Khor KA; Cheang P
    Biomaterials; 2004 Aug; 25(17):3463-71. PubMed ID: 15020120
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.