These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 18022838)

  • 41. Development of a 95/5 poly(L-lactide-co-glycolide)/hydroxylapatite and beta-tricalcium phosphate scaffold as bone replacement material via selective laser sintering.
    Simpson RL; Wiria FE; Amis AA; Chua CK; Leong KF; Hansen UN; Chandrasekaran M; Lee MW
    J Biomed Mater Res B Appl Biomater; 2008 Jan; 84(1):17-25. PubMed ID: 17465027
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Improved biocomposite development of poly(vinyl alcohol) and hydroxyapatite for tissue engineering scaffold fabrication using selective laser sintering.
    Wiria FE; Chua CK; Leong KF; Quah ZY; Chandrasekaran M; Lee MW
    J Mater Sci Mater Med; 2008 Mar; 19(3):989-96. PubMed ID: 17665112
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Development of a synthetic bone scaffold using porous hydroxyapatite for bone repair.
    Mustaffa R; Besar I; Andanastuti M
    Med J Malaysia; 2008 Jul; 63 Suppl A():95-6. PubMed ID: 19025001
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Bioactive composites consisting of PEEK and calcium silicate powders.
    Kim IY; Sugino A; Kikuta K; Ohtsuki C; Cho SB
    J Biomater Appl; 2009 Aug; 24(2):105-18. PubMed ID: 18757493
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Macroporous hydroxyapatite scaffolds for bone tissue engineering applications: physicochemical characterization and assessment of rat bone marrow stromal cell viability.
    Oliveira JM; Silva SS; Malafaya PB; Rodrigues MT; Kotobuki N; Hirose M; Gomes ME; Mano JF; Ohgushi H; Reis RL
    J Biomed Mater Res A; 2009 Oct; 91(1):175-86. PubMed ID: 18780358
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Performance and characterization of a nanophased porous hydroxyapatite for protein chromatography.
    Jungbauer A; Hahn R; Deinhofer K; Luo P
    Biotechnol Bioeng; 2004 Aug; 87(3):364-75. PubMed ID: 15281111
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Preparation and evaluation of porous poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) hydroxyapatite composite scaffolds.
    Jing Xi ; Ling Zhang ; Zhenhu An Zheng ; Guoqiang Chen ; Yandao Gong ; Nanming Zhao ; Xiufang Zhang
    J Biomater Appl; 2008 Jan; 22(4):293-307. PubMed ID: 18089673
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Biological performance of chemical hydroxyapatite coating associated with implant surface modification by laser beam: biomechanical study in rabbit tibias.
    Faeda RS; Tavares HS; Sartori R; Guastaldi AC; Marcantonio E
    J Oral Maxillofac Surg; 2009 Aug; 67(8):1706-15. PubMed ID: 19615586
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The morphology of anisotropic 3D-printed hydroxyapatite scaffolds.
    Fierz FC; Beckmann F; Huser M; Irsen SH; Leukers B; Witte F; Degistirici O; Andronache A; Thie M; Müller B
    Biomaterials; 2008 Oct; 29(28):3799-806. PubMed ID: 18606446
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Study of laser created ZRO2 and hydroxyapatite/ZrO2 films for implantology.
    Jelínek M; Dostálová T; Teuberová Z; Seydlová M; Masínová P; Kocourek T; Mróz W; Prokopiuk A; Smetana K
    Biomol Eng; 2007 Feb; 24(1):103-6. PubMed ID: 16839809
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Synthesis, microstructure, and mechanical behaviour of a unique porous PHBV scaffold manufactured using selective laser sintering.
    Diermann SH; Lu M; Zhao Y; Vandi LJ; Dargusch M; Huang H
    J Mech Behav Biomed Mater; 2018 Aug; 84():151-160. PubMed ID: 29778988
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Processing of an apatite-mullite glass-ceramic and an hydroxyapatite/phosphate glass composite by selective laser sintering.
    Lorrison JC; Dalgarno KW; Wood DJ
    J Mater Sci Mater Med; 2005 Aug; 16(8):775-81. PubMed ID: 15965749
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Bilayered chitosan-based scaffolds for osteochondral tissue engineering: influence of hydroxyapatite on in vitro cytotoxicity and dynamic bioactivity studies in a specific double-chamber bioreactor.
    Malafaya PB; Reis RL
    Acta Biomater; 2009 Feb; 5(2):644-60. PubMed ID: 18951857
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Three-dimensional biomimetic mineralization of dense hydrogel templates.
    Liu G; Zhao D; Tomsia AP; Minor AM; Song X; Saiz E
    J Am Chem Soc; 2009 Jul; 131(29):9937-9. PubMed ID: 19621954
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Preparation and characterization of nano-hydroxyapatite/silk fibroin porous scaffolds.
    Liu L; Liu J; Wang M; Min S; Cai Y; Zhu L; Yao J
    J Biomater Sci Polym Ed; 2008; 19(3):325-38. PubMed ID: 18325234
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Influence of airborne-particle abrasion on mechanical properties and bond strength of carbon/epoxy and glass/bis-GMA fiber-reinforced resin posts.
    Soares CJ; Santana FR; Pereira JC; Araujo TS; Menezes MS
    J Prosthet Dent; 2008 Jun; 99(6):444-54. PubMed ID: 18514666
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Grain growth associates mechanical properties in nano-hydroxyapatite bone scaffolds.
    Shuai C; Gao C; Feng P; Peng S; Wen X
    J Nanosci Nanotechnol; 2013 Aug; 13(8):5340-5. PubMed ID: 23882761
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Characterization of a poly-epsilon-caprolactone polymeric drug delivery device built by selective laser sintering.
    Leong KF; Wiria FE; Chua CK; Li SH
    Biomed Mater Eng; 2007; 17(3):147-57. PubMed ID: 17502691
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Development of tissue scaffolds using selective laser sintering of polyvinyl alcohol/hydroxyapatite biocomposite for craniofacial and joint defects.
    Chua CK; Leong KF; Tan KH; Wiria FE; Cheah CM
    J Mater Sci Mater Med; 2004 Oct; 15(10):1113-21. PubMed ID: 15516872
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Mechanical properties and in vitro response of strontium-containing hydroxyapatite/polyetheretherketone composites.
    Wong KL; Wong CT; Liu WC; Pan HB; Fong MK; Lam WM; Cheung WL; Tang WM; Chiu KY; Luk KD; Lu WW
    Biomaterials; 2009 Aug; 30(23-24):3810-7. PubMed ID: 19427032
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.