BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 18022888)

  • 1. From thioesters to amides and back: condensation domain reversibility in the biosynthesis of vibriobactin.
    Balibar CJ; Walsh CT
    Chembiochem; 2008 Jan; 9(1):42-5. PubMed ID: 18022888
    [No Abstract]   [Full Text] [Related]  

  • 2. Catalytically inactive condensation domain C1 is responsible for the dimerization of the VibF subunit of vibriobactin synthetase.
    Hillson NJ; Balibar CJ; Walsh CT
    Biochemistry; 2004 Sep; 43(35):11344-51. PubMed ID: 15366944
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heterocycle formation in vibriobactin biosynthesis: alternative substrate utilization and identification of a condensed intermediate.
    Marshall CG; Burkart MD; Keating TA; Walsh CT
    Biochemistry; 2001 Sep; 40(35):10655-63. PubMed ID: 11524010
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vibriobactin biosynthesis in Vibrio cholerae: VibH is an amide synthase homologous to nonribosomal peptide synthetase condensation domains.
    Keating TA; Marshall CG; Walsh CT
    Biochemistry; 2000 Dec; 39(50):15513-21. PubMed ID: 11112537
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Directed evolution of aryl carrier proteins in the enterobactin synthetase.
    Zhou Z; Lai JR; Walsh CT
    Proc Natl Acad Sci U S A; 2007 Jul; 104(28):11621-6. PubMed ID: 17606920
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catalytic mapping of the vibriobactin biosynthetic enzyme VibF.
    Marshall CG; Hillson NJ; Walsh CT
    Biochemistry; 2002 Jan; 41(1):244-50. PubMed ID: 11772022
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reconstitution and characterization of the Vibrio cholerae vibriobactin synthetase from VibB, VibE, VibF, and VibH.
    Keating TA; Marshall CG; Walsh CT
    Biochemistry; 2000 Dec; 39(50):15522-30. PubMed ID: 11112538
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reactions between Weinreb amides and 2-magnesiated oxazoles: a simple and efficient preparation of 2-acyl oxazoles.
    Pippel DJ; Mapes CM; Mani NS
    J Org Chem; 2007 Jul; 72(15):5828-31. PubMed ID: 17585818
    [TBL] [Abstract][Full Text] [Related]  

  • 9. From propargylic amides to functionalized oxazoles: domino gold catalysis/oxidation by dioxygen.
    Hashmi AS; Blanco Jaimes MC; Schuster AM; Rominger F
    J Org Chem; 2012 Aug; 77(15):6394-408. PubMed ID: 22800562
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The rhodium carbene route to oxazoles: a remarkable catalyst effect.
    Shi B; Blake AJ; Campbell IB; Judkins BD; Moody CJ
    Chem Commun (Camb); 2009 Jun; (22):3291-3. PubMed ID: 19587943
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The influence of catechol structure on the suicide-inactivation of tyrosinase.
    Ramsden CA; Stratford MR; Riley PA
    Org Biomol Chem; 2009 Sep; 7(17):3388-90. PubMed ID: 19675891
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intramolecular Pd(II)-catalyzed cyclization of propargylamides: straightforward synthesis of 5-oxazolecarbaldehydes.
    Beccalli EM; Borsini E; Broggini G; Palmisano G; Sottocornola S
    J Org Chem; 2008 Jun; 73(12):4746-9. PubMed ID: 18489152
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Syntheses and studies of amamistatin B analogs reveals that anticancer activity is relatively independent of stereochemistry, ester or amide linkage and select replacement of one of the metal chelating groups.
    Wu C; Miller PA; Miller MJ
    Bioorg Med Chem Lett; 2011 May; 21(9):2611-5. PubMed ID: 21315591
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flow chemistry syntheses of natural products.
    Pastre JC; Browne DL; Ley SV
    Chem Soc Rev; 2013 Dec; 42(23):8849-69. PubMed ID: 23999700
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amide Bond Activation of Biological Molecules.
    Mahesh S; Tang KC; Raj M
    Molecules; 2018 Oct; 23(10):. PubMed ID: 30322008
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The leiodolide B puzzle.
    Larivée A; Unger JB; Thomas M; Wirtz C; Dubost C; Handa S; Fürstner A
    Angew Chem Int Ed Engl; 2011 Jan; 50(1):304-9. PubMed ID: 21082641
    [No Abstract]   [Full Text] [Related]  

  • 17. Direct arylation of oxazoles at C2. A concise approach to consecutively linked oxazoles.
    Flegeau EF; Popkin ME; Greaney MF
    Org Lett; 2008 Jul; 10(13):2717-20. PubMed ID: 18540631
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chiral 4-phenyl-2-trifluoromethyloxazolidine: a high-performance chiral auxiliary for the alkylation of amides.
    Tessier A; Pytkowicz J; Brigaud T
    Angew Chem Int Ed Engl; 2006 May; 45(22):3677-81. PubMed ID: 16639757
    [No Abstract]   [Full Text] [Related]  

  • 19. Catalytic asymmetric Michael reactions with enamides as nucleophiles.
    Berthiol F; Matsubara R; Kawai N; Kobayashi S
    Angew Chem Int Ed Engl; 2007; 46(41):7803-5. PubMed ID: 17768749
    [No Abstract]   [Full Text] [Related]  

  • 20. Direct conversion of esters, lactones, and carboxylic acids to oxazolines catalyzed by a tetranuclear zinc cluster.
    Ohshima T; Iwasaki T; Mashima K
    Chem Commun (Camb); 2006 Jul; (25):2711-3. PubMed ID: 16786096
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.