BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 18023020)

  • 1. Cluster analysis of hydration waters around the active sites of bacterial alanine racemase using a 2-ns MD simulation.
    Huang HC; Jupiter D; Qiu M; Briggs JM; Vanburen V
    Biopolymers; 2008 Mar; 89(3):210-9. PubMed ID: 18023020
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular dynamics studies of alanine racemase: a structural model for drug design.
    Mustata GI; Soares TA; Briggs JM
    Biopolymers; 2003 Oct; 70(2):186-200. PubMed ID: 14517907
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cluster analysis of water molecules in alanine racemase and their putative structural role.
    Mustata G; Briggs JM
    Protein Eng Des Sel; 2004 Mar; 17(3):223-34. PubMed ID: 15115851
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reaction of alanine racemase with 1-aminoethylphosphonic acid forms a stable external aldimine.
    Stamper GF; Morollo AA; Ringe D
    Biochemistry; 1998 Jul; 37(29):10438-45. PubMed ID: 9671513
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understanding catalytic specificity in alanine racemase from quantum mechanical and molecular mechanical simulations of the arginine 219 mutant.
    Rubinstein A; Major DT
    Biochemistry; 2010 May; 49(18):3957-64. PubMed ID: 20394349
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A connected-cluster of hydration around myoglobin: correlation between molecular dynamics simulations and experiment.
    Lounnas V; Pettitt BM
    Proteins; 1994 Feb; 18(2):133-47. PubMed ID: 8159663
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The 1.9 A crystal structure of alanine racemase from Mycobacterium tuberculosis contains a conserved entryway into the active site.
    LeMagueres P; Im H; Ebalunode J; Strych U; Benedik MJ; Briggs JM; Kohn H; Krause KL
    Biochemistry; 2005 Feb; 44(5):1471-81. PubMed ID: 15683232
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Static and dynamic water molecules in Cu,Zn superoxide dismutase.
    Falconi M; Brunelli M; Pesce A; Ferrario M; Bolognesi M; Desideri A
    Proteins; 2003 Jun; 51(4):607-15. PubMed ID: 12784219
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A side reaction of alanine racemase: transamination of cycloserine.
    Fenn TD; Stamper GF; Morollo AA; Ringe D
    Biochemistry; 2003 May; 42(19):5775-83. PubMed ID: 12741835
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of the structure of alanine racemase from Bacillus stearothermophilus at 1.9-A resolution.
    Shaw JP; Petsko GA; Ringe D
    Biochemistry; 1997 Feb; 36(6):1329-42. PubMed ID: 9063881
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploring the conserved water site and hydration of a coiled-coil trimerisation motif: a MD simulation study.
    Dolenc J; Baron R; Missimer JH; Steinmetz MO; van Gunsteren WF
    Chembiochem; 2008 Jul; 9(11):1749-56. PubMed ID: 18553323
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure of a Michaelis complex analogue: propionate binds in the substrate carboxylate site of alanine racemase.
    Morollo AA; Petsko GA; Ringe D
    Biochemistry; 1999 Mar; 38(11):3293-301. PubMed ID: 10079072
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transition state stabilization and alpha-amino carbon acidity in alanine racemase.
    Major DT; Nam K; Gao J
    J Am Chem Soc; 2006 Jun; 128(25):8114-5. PubMed ID: 16787057
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational study of IAG-nucleoside hydrolase: determination of the preferred ground state conformation and the role of active site residues.
    Mazumder-Shivakumar D; Bruice TC
    Biochemistry; 2005 May; 44(21):7805-17. PubMed ID: 15909995
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reaction mechanism of alanine racemase from Bacillus stearothermophilus: x-ray crystallographic studies of the enzyme bound with N-(5'-phosphopyridoxyl)alanine.
    Watanabe A; Yoshimura T; Mikami B; Hayashi H; Kagamiyama H; Esaki N
    J Biol Chem; 2002 May; 277(21):19166-72. PubMed ID: 11886871
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal water dynamics of guanosine dihydrate: analysis of atomic displacement parameters, time profile of hydrogen-bonding probability, and translocation of water by MD simulation.
    Yoneda S; Sugawara Y; Urabe H
    J Phys Chem B; 2005 Jan; 109(3):1304-12. PubMed ID: 16851095
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insights into activation and RNA binding of trp RNA-binding attenuation protein (TRAP) through all-atom simulations.
    Murtola T; Vattulainen I; Falck E
    Proteins; 2008 Jun; 71(4):1995-2011. PubMed ID: 18186477
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structure at 1.45 A resolution of alanine racemase from a pathogenic bacterium, Pseudomonas aeruginosa, contains both internal and external aldimine forms.
    LeMagueres P; Im H; Dvorak A; Strych U; Benedik M; Krause KL
    Biochemistry; 2003 Dec; 42(50):14752-61. PubMed ID: 14674749
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A structure-based design approach for the identification of novel inhibitors: application to an alanine racemase.
    Mustata GI; Briggs JM
    J Comput Aided Mol Des; 2002 Dec; 16(12):935-53. PubMed ID: 12825624
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conversion of a PLP-dependent racemase into an aldolase by a single active site mutation.
    Seebeck FP; Hilvert D
    J Am Chem Soc; 2003 Aug; 125(34):10158-9. PubMed ID: 12926923
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.