These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 18023446)

  • 1. A critical distance study of stress concentrations in bone.
    Kasiri S; Taylor D
    J Biomech; 2008; 41(3):603-9. PubMed ID: 18023446
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Can the theory of critical distances predict the failure of shape memory alloys?
    Kasiri S; Kelly DJ; Taylor D
    Comput Methods Biomech Biomed Engin; 2011 Jun; 14(6):491-6. PubMed ID: 21331959
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Finite element modeling for strain rate dependency of fracture resistance in compact bone.
    Charoenphan S; Polchai A
    J Biomech Eng; 2007 Feb; 129(1):20-5. PubMed ID: 17227094
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wedge indentation fracture of cortical bone: experimental data and predictions.
    Kasiri S; Reilly G; Taylor D
    J Biomech Eng; 2010 Aug; 132(8):081009. PubMed ID: 20670058
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Subject-specific finite element models implementing a maximum principal strain criterion are able to estimate failure risk and fracture location on human femurs tested in vitro.
    Schileo E; Taddei F; Cristofolini L; Viceconti M
    J Biomech; 2008; 41(2):356-67. PubMed ID: 18022179
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimentally determined microcracking around a circular hole in a flat plate of bone: comparison with predicted stresses.
    Zioupos P; Currey JD; Mirza MS; Barton DC
    Philos Trans R Soc Lond B Biol Sci; 1995 Mar; 347(1322):383-96. PubMed ID: 7597104
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomechanical analysis of retrograde intramedullary nail fixation in distal femoral fractures.
    Chen SH; Yu TC; Chang CH; Lu YC
    Knee; 2008 Oct; 15(5):384-9. PubMed ID: 18722126
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of joint component mechanical properties and adhesive layer thickness on stress distribution in micro-tensile bond strength specimens.
    Neves Ade A; Coutinho E; Poitevin A; Van der Sloten J; Van Meerbeek B; Van Oosterwyck H
    Dent Mater; 2009 Jan; 25(1):4-12. PubMed ID: 18554711
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural consequences of endosteal metastatic lesions in long bones.
    Hipp JA; McBroom RJ; Cheal EJ; Hayes WC
    J Orthop Res; 1989; 7(6):828-37. PubMed ID: 2795323
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting fracture of the femoral neck.
    Stepanskiy L; Seliktar RR
    J Biomech; 2007; 40(8):1813-23. PubMed ID: 17046773
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The influence of implant diameter and length on stress distribution of osseointegrated implants related to crestal bone geometry: a three-dimensional finite element analysis.
    Baggi L; Cappelloni I; Di Girolamo M; Maceri F; Vairo G
    J Prosthet Dent; 2008 Dec; 100(6):422-31. PubMed ID: 19033026
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Finite element and experimental cortex strains of the intact and implanted tibia.
    Completo A; Fonseca F; Simões JA
    J Biomech Eng; 2007 Oct; 129(5):791-7. PubMed ID: 17887906
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Finite element analysis (FEA) for the structure capacity of proximal femur during falling--(I) FEA model and the failure criteria for the bone].
    Fan L; Wang E
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Oct; 23(5):1028-32. PubMed ID: 17121347
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The prediction of stress fractures using a 'stressed volume' concept.
    Taylor D; Kuiper JH
    J Orthop Res; 2001 Sep; 19(5):919-26. PubMed ID: 11562142
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting the structural integrity of bone defects repaired using bone graft materials.
    Brazel E; Taylor D
    Comput Methods Biomech Biomed Engin; 2009 Jun; 12(3):297-304. PubMed ID: 18949652
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling of dynamic fracture and damage in two-dimensional trabecular bone microstructures using the cohesive finite element method.
    Tomar V
    J Biomech Eng; 2008 Apr; 130(2):021021. PubMed ID: 18412508
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Internal strain gradients quantified in bone under load using high-energy X-ray scattering.
    Stock SR; Yuan F; Brinson LC; Almer JD
    J Biomech; 2011 Jan; 44(2):291-6. PubMed ID: 21051040
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of fracture mechanics to failure in manatee rib bone.
    Yan J; Clifton KB; Reep RL; Mecholsky JJ
    J Biomech Eng; 2006 Jun; 128(3):281-9. PubMed ID: 16706577
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Notching of the anterior femoral cortex during total knee arthroplasty characteristics that increase local stresses.
    Zalzal P; Backstein D; Gross AE; Papini M
    J Arthroplasty; 2006 Aug; 21(5):737-43. PubMed ID: 16877162
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Blunt trauma and acute aortic syndrome: a three-layer finite-element model of the aortic wall.
    Zhao AR; Field ML; Digges K; Richens D
    Eur J Cardiothorac Surg; 2008 Sep; 34(3):623-9. PubMed ID: 18539473
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.