BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 18023917)

  • 1. Phenylalanine ammonia-lyase-mediated biosynthesis of 2-hydroxy-4-methoxybenzaldehyde in roots of Hemidesmus indicus.
    Chakraborty D; Sircar D; Mitra A
    J Plant Physiol; 2008 Jul; 165(10):1033-40. PubMed ID: 18023917
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shikimate pathway modulates the elicitor-stimulated accumulation of fragrant 2-hydroxy-4-methoxybenzaldehyde in Hemidesmus indicus roots.
    Kundu A; Jawali N; Mitra A
    Plant Physiol Biochem; 2012 Jul; 56():104-8. PubMed ID: 22609460
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accumulation of p-hydroxybenzoic acid in hairy roots of Daucus carota 2: confirming biosynthetic steps through feeding of inhibitors and precursors.
    Sircar D; Mitra A
    J Plant Physiol; 2009 Sep; 166(13):1370-80. PubMed ID: 19342120
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flavoring extracts of Hemidesmus indicus roots and Vanilla planifolia pods exhibit in vitro acetylcholinesterase inhibitory activities.
    Kundu A; Mitra A
    Plant Foods Hum Nutr; 2013 Sep; 68(3):247-53. PubMed ID: 23715789
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of 2-hydroxy-4-methoxybenzaldehyde in roots of Decalepis hamiltonii (Wight & Arn.) and Hemidesmus indicus R.Br.
    Nagarajan S; Rao LJ
    J AOAC Int; 2003; 86(3):564-7. PubMed ID: 12852577
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Indian sarsaparilla, Hemidesmus indicus (L.) R. Br. ex Schult: tissue culture studies.
    Kher MM; Shekhawat MS; Nataraj M; Teixeira da Silva JA
    Appl Microbiol Biotechnol; 2020 Aug; 104(15):6463-6479. PubMed ID: 32535696
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chitosan and chitin oligomers increase phenylalanine ammonia-lyase and tyrosine ammonia-lyase activities in soybean leaves.
    Khan W; Prithiviraj B; Smith DL
    J Plant Physiol; 2003 Aug; 160(8):859-63. PubMed ID: 12964861
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence for p-hydroxybenzoate formation involving enzymatic phenylpropanoid side-chain cleavage in hairy roots of Daucus carota.
    Sircar D; Mitra A
    J Plant Physiol; 2008 Mar; 165(4):407-14. PubMed ID: 17658659
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alternative oxidase (AOX) and phenolic metabolism in methyl jasmonate-treated hairy root cultures of Daucus carota L.
    Sircar D; Cardoso HG; Mukherjee C; Mitra A; Arnholdt-Schmitt B
    J Plant Physiol; 2012 May; 169(7):657-63. PubMed ID: 22326792
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 2-Hydroxy-4-methoxybenzaldehyde from
    Kannappan A; Durgadevi R; Srinivasan R; Lagoa RJL; Packiavathy IASV; Pandian SK; Veera Ravi A
    Biofouling; 2020 May; 36(5):549-563. PubMed ID: 32586125
    [No Abstract]   [Full Text] [Related]  

  • 11. Copper uptake is differentially modulated by phenylalanine ammonia-lyase inhibition in diploid and tetraploid chamomile.
    Kováčik J; Klejdus B; Hedbavny J; Zoń J
    J Agric Food Chem; 2010 Sep; 58(18):10270-6. PubMed ID: 20839889
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic shift from withasteroid formation to phenylpropanoid accumulation in cryptogein-cotransformed hairy roots of Withania somnifera (L.) Dunal.
    Sil B; Mukherjee C; Jha S; Mitra A
    Protoplasma; 2015 Jul; 252(4):1097-110. PubMed ID: 25534257
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Induction of aromatic amino acids and phenylpropanoid compounds in Scrophularia striata Boiss. cell culture in response to chitosan-induced oxidative stress.
    Kamalipourazad M; Sharifi M; Maivan HZ; Behmanesh M; Chashmi NA
    Plant Physiol Biochem; 2016 Oct; 107():374-384. PubMed ID: 27392152
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cloning and characterization of phenylalanine ammonia-lyase and cinnamate 4-hydroxylase and pyranocoumarin biosynthesis in Angelica gigas.
    Park JH; Park NI; Xu H; Park SU
    J Nat Prod; 2010 Aug; 73(8):1394-7. PubMed ID: 20701298
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression profiles of key phenylpropanoid genes during Vanilla planifolia pod development reveal a positive correlation between PAL gene expression and vanillin biosynthesis.
    Fock-Bastide I; Palama TL; Bory S; Lécolier A; Noirot M; Joët T
    Plant Physiol Biochem; 2014 Jan; 74():304-14. PubMed ID: 24342082
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Peroxidase and phenylalanine ammonia-lyase activities, phenolic acid contents, and allelochemicals-inhibited root growth of soybean.
    Herrig V; Ferrarese Mde L; Suzuki LS; Rodrigues JD; Ferrarese-Filho O
    Biol Res; 2002; 35(1):59-66. PubMed ID: 12125206
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SmKFB5 protein regulates phenolic acid biosynthesis by controlling the degradation of phenylalanine ammonia-lyase in Salvia miltiorrhiza.
    Yu H; Li D; Yang D; Xue Z; Li J; Xing B; Yan K; Han R; Liang Z
    J Exp Bot; 2021 Jun; 72(13):4915-4929. PubMed ID: 33961691
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accumulation of phenylpropanoid derivatives in chitosan-induced cell suspension culture of Cocos nucifera.
    Chakraborty M; Karun A; Mitra A
    J Plant Physiol; 2009 Jan; 166(1):63-71. PubMed ID: 18448193
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biosynthesis of phenylpropanoid amides by an endophytic Penicillium brasilianum found in root bark of Melia azedarach.
    Fill TP; da Silva BF; Rodrigues-Fo E
    J Microbiol Biotechnol; 2010 Mar; 20(3):622-9. PubMed ID: 20372037
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alterations in Taxol production in plant cell culture via manipulation of the phenylalanine ammonia lyase pathway.
    Brincat MC; Gibson DM; Shuler ML
    Biotechnol Prog; 2002; 18(6):1149-56. PubMed ID: 12467445
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.