BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 18024556)

  • 1. PHYTOCHROME KINASE SUBSTRATE1 regulates root phototropism and gravitropism.
    Boccalandro HE; De Simone SN; Bergmann-Honsberger A; Schepens I; Fankhauser C; Casal JJ
    Plant Physiol; 2008 Jan; 146(1):108-15. PubMed ID: 18024556
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PKS1 plays a role in red-light-based positive phototropism in roots.
    Molas ML; Kiss JZ
    Plant Cell Environ; 2008 Jun; 31(6):842-9. PubMed ID: 18266898
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nuclear phytochrome A signaling promotes phototropism in Arabidopsis.
    Kami C; Hersch M; Trevisan M; Genoud T; Hiltbrunner A; Bergmann S; Fankhauser C
    Plant Cell; 2012 Feb; 24(2):566-76. PubMed ID: 22374392
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hypocotyl growth orientation in blue light is determined by phytochrome A inhibition of gravitropism and phototropin promotion of phototropism.
    Lariguet P; Fankhauser C
    Plant J; 2004 Dec; 40(5):826-34. PubMed ID: 15546364
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PHYTOCHROME KINASE SUBSTRATE 1 is a phototropin 1 binding protein required for phototropism.
    Lariguet P; Schepens I; Hodgson D; Pedmale UV; Trevisan M; Kami C; de Carbonnel M; Alonso JM; Ecker JR; Liscum E; Fankhauser C
    Proc Natl Acad Sci U S A; 2006 Jun; 103(26):10134-9. PubMed ID: 16777956
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A growth regulatory loop that provides homeostasis to phytochrome a signaling.
    Lariguet P; Boccalandro HE; Alonso JM; Ecker JR; Chory J; Casal JJ; Fankhauser C
    Plant Cell; 2003 Dec; 15(12):2966-78. PubMed ID: 14615593
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phototropins function in high-intensity blue light-induced hypocotyl phototropism in Arabidopsis by altering cytosolic calcium.
    Zhao X; Wang YL; Qiao XR; Wang J; Wang LD; Xu CS; Zhang X
    Plant Physiol; 2013 Jul; 162(3):1539-51. PubMed ID: 23674105
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reduced phototropism in pks mutants may be due to altered auxin-regulated gene expression or reduced lateral auxin transport.
    Kami C; Allenbach L; Zourelidou M; Ljung K; Schütz F; Isono E; Watahiki MK; Yamamoto KT; Schwechheimer C; Fankhauser C
    Plant J; 2014 Feb; 77(3):393-403. PubMed ID: 24286493
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phytochromes A and B mediate red-light-induced positive phototropism in roots.
    Kiss JZ; Mullen JL; Correll MJ; Hangarter RP
    Plant Physiol; 2003 Mar; 131(3):1411-7. PubMed ID: 12644690
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phytochromes play a role in phototropism and gravitropism in Arabidopsis roots.
    Correll MJ; Coveney KM; Raines SV; Mullen JL; Hangarter RP; Kiss JZ
    Adv Space Res; 2003; 31(10):2203-10. PubMed ID: 14686433
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Root phototropism: how light and gravity interact in shaping plant form.
    Kiss JZ; Correll MJ; Mullen JL; Hangarter RP; Edelmann RE
    Gravit Space Biol Bull; 2003 Jun; 16(2):55-60. PubMed ID: 12959132
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PKS1 and PKS2 affect the phyA state in etiolated Arabidopsis seedlings.
    Sineshchekov V; Fankhauser C
    Photochem Photobiol Sci; 2004 Jun; 3(6):608-11. PubMed ID: 15170492
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phototropism and gravitropism in transgenic lines of Arabidopsis altered in the phytochrome pathway.
    Hopkins JA; Kiss JZ
    Physiol Plant; 2012 Jul; 145(3):461-73. PubMed ID: 22380624
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Light-dependent gravitropism and negative phototropism of inflorescence stems in a dominant Aux/IAA mutant of Arabidopsis thaliana, axr2.
    Sato A; Sasaki S; Matsuzaki J; Yamamoto KT
    J Plant Res; 2014 Sep; 127(5):627-39. PubMed ID: 24938853
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phototropism of Arabidopsis thaliana in microgravity and fractional gravity on the International Space Station.
    Kiss JZ; Millar KD; Edelmann RE
    Planta; 2012 Aug; 236(2):635-45. PubMed ID: 22481136
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of the phytochrome and cryptochrome signaling pathways in hypocotyl phototropism.
    Tsuchida-Mayama T; Sakai T; Hanada A; Uehara Y; Asami T; Yamaguchi S
    Plant J; 2010 May; 62(4):653-62. PubMed ID: 20202166
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Arabidopsis WAVY GROWTH 2 protein modulates root bending in response to environmental stimuli.
    Mochizuki S; Harada A; Inada S; Sugimoto-Shirasu K; Stacey N; Wada T; Ishiguro S; Okada K; Sakai T
    Plant Cell; 2005 Feb; 17(2):537-47. PubMed ID: 15659627
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Defining the site of light perception and initiation of phototropism in Arabidopsis.
    Preuten T; Hohm T; Bergmann S; Fankhauser C
    Curr Biol; 2013 Oct; 23(19):1934-8. PubMed ID: 24076239
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proper PIN1 distribution is needed for root negative phototropism in Arabidopsis.
    Zhang KX; Xu HH; Gong W; Jin Y; Shi YY; Yuan TT; Li J; Lu YT
    PLoS One; 2014; 9(1):e85720. PubMed ID: 24465665
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Root phototropism: from dogma to the mechanism of blue light perception.
    Kutschera U; Briggs WR
    Planta; 2012 Mar; 235(3):443-52. PubMed ID: 22293854
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.