BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 18024677)

  • 1. Methyl sulfide production by a novel carbon monoxide metabolism in Methanosarcina acetivorans.
    Moran JJ; House CH; Vrentas JM; Freeman KH
    Appl Environ Microbiol; 2008 Jan; 74(2):540-2. PubMed ID: 18024677
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic and Physiological Probing of Cytoplasmic Bypasses for the Energy-Converting Methyltransferase Mtr in Methanosarcina acetivorans.
    Schöne C; Poehlein A; Rother M
    Appl Environ Microbiol; 2023 Jul; 89(7):e0216122. PubMed ID: 37347168
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of carbon monoxide on metabolite formation in Methanosarcina acetivorans.
    Oelgeschläger E; Rother M
    FEMS Microbiol Lett; 2009 Mar; 292(2):254-60. PubMed ID: 19191870
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anaerobic growth of Methanosarcina acetivorans C2A on carbon monoxide: an unusual way of life for a methanogenic archaeon.
    Rother M; Metcalf WW
    Proc Natl Acad Sci U S A; 2004 Nov; 101(48):16929-34. PubMed ID: 15550538
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deconstructing
    Schöne C; Poehlein A; Jehmlich N; Adlung N; Daniel R; von Bergen M; Scheller S; Rother M
    Proc Natl Acad Sci U S A; 2022 Jan; 119(2):. PubMed ID: 34992140
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-scale metabolic reconstruction and hypothesis testing in the methanogenic archaeon Methanosarcina acetivorans C2A.
    Benedict MN; Gonnerman MC; Metcalf WW; Price ND
    J Bacteriol; 2012 Feb; 194(4):855-65. PubMed ID: 22139506
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo role of three fused corrinoid/methyl transfer proteins in Methanosarcina acetivorans.
    Oelgeschläger E; Rother M
    Mol Microbiol; 2009 Jun; 72(5):1260-72. PubMed ID: 19432805
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic and proteomic analyses of CO utilization by Methanosarcina acetivorans.
    Rother M; Oelgeschläger E; Metcalf WM
    Arch Microbiol; 2007 Nov; 188(5):463-72. PubMed ID: 17554525
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Membrane-Bound Cytochrome Enables
    Holmes DE; Ueki T; Tang HY; Zhou J; Smith JA; Chaput G; Lovley DR
    mBio; 2019 Aug; 10(4):. PubMed ID: 31431545
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A heme-based redox sensor in the methanogenic archaeon Methanosarcina acetivorans.
    Molitor B; Stassen M; Modi A; El-Mashtoly SF; Laurich C; Lubitz W; Dawson JH; Rother M; Frankenberg-Dinkel N
    J Biol Chem; 2013 Jun; 288(25):18458-72. PubMed ID: 23661702
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An unconventional pathway for reduction of CO2 to methane in CO-grown Methanosarcina acetivorans revealed by proteomics.
    Lessner DJ; Li L; Li Q; Rejtar T; Andreev VP; Reichlen M; Hill K; Moran JJ; Karger BL; Ferry JG
    Proc Natl Acad Sci U S A; 2006 Nov; 103(47):17921-6. PubMed ID: 17101988
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient Sulfide Assimilation in Methanosarcina acetivorans Is Mediated by the MA1715 Protein.
    Rauch BJ; Perona JJ
    J Bacteriol; 2016 Jul; 198(14):1974-83. PubMed ID: 27137504
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of the fused corrinoid/methyl transfer protein CmtA during CO-dependent growth of Methanosarcina acetivorans.
    Vepachedu VR; Ferry JG
    J Bacteriol; 2012 Aug; 194(16):4161-8. PubMed ID: 22636775
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbon monoxide-dependent energy metabolism in anaerobic bacteria and archaea.
    Oelgeschläger E; Rother M
    Arch Microbiol; 2008 Sep; 190(3):257-69. PubMed ID: 18575848
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physiological Evidence for Isopotential Tunneling in the Electron Transport Chain of Methane-Producing Archaea.
    Duszenko N; Buan NR
    Appl Environ Microbiol; 2017 Sep; 83(18):. PubMed ID: 28710268
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electron transport in the pathway of acetate conversion to methane in the marine archaeon Methanosarcina acetivorans.
    Li Q; Li L; Rejtar T; Lessner DJ; Karger BL; Ferry JG
    J Bacteriol; 2006 Jan; 188(2):702-10. PubMed ID: 16385060
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional and structural roles of the N-terminal extension in Methanosarcina acetivorans protoglobin.
    Ciaccio C; Pesce A; Tundo GR; Tilleman L; Bertolacci L; Dewilde S; Moens L; Ascenzi P; Bolognesi M; Nardini M; Coletta M
    Biochim Biophys Acta; 2013 Sep; 1834(9):1813-23. PubMed ID: 23485914
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic analysis of MA4079, an aldehyde dehydrogenase homolog, in Methanosarcina acetivorans.
    Kliefoth M; Langer JD; Matschiavelli N; Oelgeschläger E; Rother M
    Arch Microbiol; 2012 Feb; 194(2):75-85. PubMed ID: 21735228
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon-dependent control of electron transfer and central carbon pathway genes for methane biosynthesis in the Archaean, Methanosarcina acetivorans strain C2A.
    Rohlin L; Gunsalus RP
    BMC Microbiol; 2010 Feb; 10():62. PubMed ID: 20178638
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular characterization of the thioredoxin system from Methanosarcina acetivorans.
    McCarver AC; Lessner DJ
    FEBS J; 2014 Oct; 281(20):4598-611. PubMed ID: 25112424
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.