These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
41 related articles for article (PubMed ID: 18024837)
1. Gender-dependent ATPA-induced changes in long-term potentiation in the rat lateral amygdala. Schubert M; Drephal C; Albrecht D FASEB J; 2008 Apr; 22(4):1268-74. PubMed ID: 18024837 [TBL] [Abstract][Full Text] [Related]
2. Activation of kainate GLU(K5) transmission rescues kindling-induced impairment of LTP in the rat lateral amygdala. Schubert M; Albrecht D Neuropsychopharmacology; 2008 Sep; 33(10):2524-35. PubMed ID: 18046310 [TBL] [Abstract][Full Text] [Related]
3. Input-specific long-term potentiation in the rat lateral amygdala of horizontal slices. Drephal C; Schubert M; Albrecht D Neurobiol Learn Mem; 2006 May; 85(3):272-82. PubMed ID: 16406707 [TBL] [Abstract][Full Text] [Related]
4. Long-term depression in horizontal slices of the rat lateral amygdala. Kaschel T; Schubert M; Albrecht D Synapse; 2004 Sep; 53(3):141-50. PubMed ID: 15236346 [TBL] [Abstract][Full Text] [Related]
5. Effects of the kainate receptor agonist ATPA on glutamatergic synaptic transmission and plasticity during early postnatal development. Sallert M; Malkki H; Segerstråle M; Taira T; Lauri SE Neuropharmacology; 2007 May; 52(6):1354-65. PubMed ID: 17395219 [TBL] [Abstract][Full Text] [Related]
6. Fear memories induce a switch in stimulus response and signaling mechanisms for long-term potentiation in the lateral amygdala. Schroeder BW; Shinnick-Gallagher P Eur J Neurosci; 2004 Jul; 20(2):549-56. PubMed ID: 15233764 [TBL] [Abstract][Full Text] [Related]
7. Both NR2A and NR2B subunits of the NMDA receptor are critical for long-term potentiation and long-term depression in the lateral amygdala of horizontal slices of adult mice. Müller T; Albrecht D; Gebhardt C Learn Mem; 2009 Jun; 16(6):395-405. PubMed ID: 19474217 [TBL] [Abstract][Full Text] [Related]
8. Neuroprotection of GluK1 kainate receptor agonist ATPA against ischemic neuronal injury through inhibiting GluK2 kainate receptor-JNK3 pathway via GABA(A) receptors. Lv Q; Liu Y; Han D; Xu J; Zong YY; Wang Y; Zhang GY Brain Res; 2012 May; 1456():1-13. PubMed ID: 22516108 [TBL] [Abstract][Full Text] [Related]
9. Characterisation of the effects of ATPA, a GLU(K5) receptor selective agonist, on excitatory synaptic transmission in area CA1 of rat hippocampal slices. Clarke VR; Collingridge GL Neuropharmacology; 2002 Jun; 42(7):889-902. PubMed ID: 12069899 [TBL] [Abstract][Full Text] [Related]
10. Stabilization of thalamo-cortical long-term potentiation by the amygdala: cholinergic and transcription-dependent mechanisms. Dringenberg HC; Kuo MC; Tomaszek S Eur J Neurosci; 2004 Jul; 20(2):557-65. PubMed ID: 15233765 [TBL] [Abstract][Full Text] [Related]
11. Ca2+/calmodulin-dependent protein kinase II-dependent long-term potentiation in the rat suprachiasmatic nucleus and its inhibition by melatonin. Fukunaga K; Horikawa K; Shibata S; Takeuchi Y; Miyamoto E J Neurosci Res; 2002 Dec; 70(6):799-807. PubMed ID: 12444602 [TBL] [Abstract][Full Text] [Related]
12. Kainate receptor-mediated heterosynaptic facilitation in the amygdala. Li H; Chen A; Xing G; Wei ML; Rogawski MA Nat Neurosci; 2001 Jun; 4(6):612-20. PubMed ID: 11369942 [TBL] [Abstract][Full Text] [Related]
13. Cocaine withdrawal enhances long-term potentiation induced by corticotropin-releasing factor at central amygdala glutamatergic synapses via CRF, NMDA receptors and PKA. Pollandt S; Liu J; Orozco-Cabal L; Grigoriadis DE; Vale WW; Gallagher JP; Shinnick-Gallagher P Eur J Neurosci; 2006 Sep; 24(6):1733-43. PubMed ID: 17004937 [TBL] [Abstract][Full Text] [Related]
14. Plasticity-specific phosphorylation of CaMKII, MAP-kinases and CREB during late-LTP in rat hippocampal slices in vitro. Ahmed T; Frey JU Neuropharmacology; 2005 Sep; 49(4):477-92. PubMed ID: 16005911 [TBL] [Abstract][Full Text] [Related]
15. Kainate receptors and the induction of mossy fibre long-term potentiation. Bortolotto ZA; Lauri S; Isaac JT; Collingridge GL Philos Trans R Soc Lond B Biol Sci; 2003 Apr; 358(1432):657-66. PubMed ID: 12740111 [TBL] [Abstract][Full Text] [Related]
16. Low-frequency stimulation induces a new form of LTP, metabotropic glutamate (mGlu5) receptor- and PKA-dependent, in the CA1 area of the rat hippocampus. Lanté F; de Jésus Ferreira MC; Guiramand J; Récasens M; Vignes M Hippocampus; 2006; 16(4):345-60. PubMed ID: 16302229 [TBL] [Abstract][Full Text] [Related]
17. Enhancement of long-term potentiation by a potent nitric oxide-guanylyl cyclase activator, 3-(5-hydroxymethyl-2-furyl)-1-benzyl-indazole. Chien WL; Liang KC; Teng CM; Kuo SC; Lee FY; Fu WM Mol Pharmacol; 2003 Jun; 63(6):1322-8. PubMed ID: 12761342 [TBL] [Abstract][Full Text] [Related]
18. Abnormal synaptic plasticity in basolateral amygdala may account for hyperactivity and attention-deficit in male rat exposed perinatally to low-dose bisphenol-A. Zhou R; Bai Y; Yang R; Zhu Y; Chi X; Li L; Chen L; Sokabe M; Chen L Neuropharmacology; 2011 Apr; 60(5):789-98. PubMed ID: 21277317 [TBL] [Abstract][Full Text] [Related]
19. Alterations in the balance of protein kinase and phosphatase activities and age-related impairments of synaptic transmission and long-term potentiation. Hsu KS; Huang CC; Liang YC; Wu HM; Chen YL; Lo SW; Ho WC Hippocampus; 2002; 12(6):787-802. PubMed ID: 12542230 [TBL] [Abstract][Full Text] [Related]
20. Role of AMPA receptor trafficking in NMDA receptor-dependent synaptic plasticity in the rat lateral amygdala. Yu SY; Wu DC; Liu L; Ge Y; Wang YT J Neurochem; 2008 Jul; 106(2):889-99. PubMed ID: 18466342 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]