These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 18024974)

  • 41. CHORAL: a differential geometry approach to the prediction of the cores of protein structures.
    Montalvão RW; Smith RE; Lovell SC; Blundell TL
    Bioinformatics; 2005 Oct; 21(19):3719-25. PubMed ID: 16046494
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A Sequence-Based Dynamic Ensemble Learning System for Protein Ligand-Binding Site Prediction.
    Chen P; Hu S; Zhang J; Gao X; Li J; Xia J; Wang B
    IEEE/ACM Trans Comput Biol Bioinform; 2016; 13(5):901-912. PubMed ID: 26661785
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Domain-based small molecule binding site annotation.
    Snyder KA; Feldman HJ; Dumontier M; Salama JJ; Hogue CW
    BMC Bioinformatics; 2006 Mar; 7():152. PubMed ID: 16545112
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Composite Module Analyst: a fitness-based tool for identification of transcription factor binding site combinations.
    Kel A; Konovalova T; Waleev T; Cheremushkin E; Kel-Margoulis O; Wingender E
    Bioinformatics; 2006 May; 22(10):1190-7. PubMed ID: 16473870
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Probabilistic multi-class multi-kernel learning: on protein fold recognition and remote homology detection.
    Damoulas T; Girolami MA
    Bioinformatics; 2008 May; 24(10):1264-70. PubMed ID: 18378524
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Probability-based pattern recognition and statistical framework for randomization: modeling tandem mass spectrum/peptide sequence false match frequencies.
    Feng J; Naiman DQ; Cooper B
    Bioinformatics; 2007 Sep; 23(17):2210-7. PubMed ID: 17510167
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Modeling DNA affinity landscape through two-round support vector regression with weighted degree kernels.
    Wang X; Kuwahara H; Gao X
    BMC Syst Biol; 2014; 8 Suppl 5(Suppl 5):S5. PubMed ID: 25605483
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Finding linear motif pairs from protein interaction networks: a probabilistic approach.
    Leung HC; Siu MH; Yiu SM; Chin FY; Sung KW
    Comput Syst Bioinformatics Conf; 2007; 6():111-9. PubMed ID: 17951817
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A machine learning approach for the identification of odorant binding proteins from sequence-derived properties.
    Pugalenthi G; Tang K; Suganthan PN; Archunan G; Sowdhamini R
    BMC Bioinformatics; 2007 Sep; 8():351. PubMed ID: 17880712
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Bio-basis function neural network for prediction of protease cleavage sites in proteins.
    Yang ZR; Thomson R
    IEEE Trans Neural Netw; 2005 Jan; 16(1):263-74. PubMed ID: 15732405
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A two-stage classifier for identification of protein-protein interface residues.
    Yan C; Dobbs D; Honavar V
    Bioinformatics; 2004 Aug; 20 Suppl 1():i371-8. PubMed ID: 15262822
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Predicting a DNA-binding protein using random forest with multiple mathematical features.
    Guan C; Niu X; Shi F; Yang K; Li N
    Biomed Mater Eng; 2015; 26 Suppl 1():S1883-9. PubMed ID: 26405960
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Deciphering protein-protein interactions. Part II. Computational methods to predict protein and domain interaction partners.
    Shoemaker BA; Panchenko AR
    PLoS Comput Biol; 2007 Apr; 3(4):e43. PubMed ID: 17465672
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Application of mRNA display for in vitro selection of DNA-binding transcription factor complexes.
    Tateyama S; Yanagawa H
    Methods Mol Biol; 2013; 977():95-109. PubMed ID: 23436356
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Local Geometry and Evolutionary Conservation of Protein Surfaces Reveal the Multiple Recognition Patches in Protein-Protein Interactions.
    Laine E; Carbone A
    PLoS Comput Biol; 2015 Dec; 11(12):e1004580. PubMed ID: 26690684
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Prediction of HLA-DRB1*0401 binding peptides using support vector machine.
    Huang W; Yang G; Zhao X; Li Z
    Int J Data Min Bioinform; 2014; 10(2):189-205. PubMed ID: 25796738
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Clustering-based approach for predicting motif pairs from protein interaction data.
    Leung HC; Siu MH; Yiu SM; Chin FY; Sung KW
    J Bioinform Comput Biol; 2009 Aug; 7(4):701-16. PubMed ID: 19634199
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Characterization of protein hubs by inferring interacting motifs from protein interactions.
    Aragues R; Sali A; Bonet J; Marti-Renom MA; Oliva B
    PLoS Comput Biol; 2007 Sep; 3(9):1761-71. PubMed ID: 17941705
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Prediction of protein function using protein-protein interaction data.
    Deng M; Zhang K; Mehta S; Chen T; Sun F
    Proc IEEE Comput Soc Bioinform Conf; 2002; 1():197-206. PubMed ID: 15838136
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Genome scale enzyme-metabolite and drug-target interaction predictions using the signature molecular descriptor.
    Faulon JL; Misra M; Martin S; Sale K; Sapra R
    Bioinformatics; 2008 Jan; 24(2):225-33. PubMed ID: 18037612
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.