These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 18025093)

  • 41. Expression during host infection and localization of Yersinia pestis autotransporter proteins.
    Lenz JD; Lawrenz MB; Cotter DG; Lane MC; Gonzalez RJ; Palacios M; Miller VL
    J Bacteriol; 2011 Nov; 193(21):5936-49. PubMed ID: 21873491
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A non-invasive in vivo imaging system to study dissemination of bioluminescent Yersinia pestis CO92 in a mouse model of pneumonic plague.
    Sha J; Rosenzweig JA; Kirtley ML; van Lier CJ; Fitts EC; Kozlova EV; Erova TE; Tiner BL; Chopra AK
    Microb Pathog; 2013 Feb; 55():39-50. PubMed ID: 23063826
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Complete Protection against Pneumonic and Bubonic Plague after a Single Oral Vaccination.
    Derbise A; Hanada Y; Khalifé M; Carniel E; Demeure CE
    PLoS Negl Trop Dis; 2015; 9(10):e0004162. PubMed ID: 26473734
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Dissociation of Tissue Destruction and Bacterial Expansion during Bubonic Plague.
    Guinet F; Avé P; Filali S; Huon C; Savin C; Huerre M; Fiette L; Carniel E
    PLoS Pathog; 2015 Oct; 11(10):e1005222. PubMed ID: 26484539
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Znu is the predominant zinc importer in Yersinia pestis during in vitro growth but is not essential for virulence.
    Desrosiers DC; Bearden SW; Mier I; Abney J; Paulley JT; Fetherston JD; Salazar JC; Radolf JD; Perry RD
    Infect Immun; 2010 Dec; 78(12):5163-77. PubMed ID: 20855510
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A comprehensive study on the role of the Yersinia pestis virulence markers in an animal model of pneumonic plague.
    Kaman WE; Hawkey S; van der Kleij D; Broekhuijsen MP; Silman NJ; Bikker FJ
    Folia Microbiol (Praha); 2011 Mar; 56(2):95-102. PubMed ID: 21468758
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Yersinia pestis and the plague.
    Rollins SE; Rollins SM; Ryan ET
    Am J Clin Pathol; 2003 Jun; 119 Suppl():S78-85. PubMed ID: 12951845
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Posttranscriptional regulation of the Yersinia pestis cyclic AMP receptor protein Crp and impact on virulence.
    Lathem WW; Schroeder JA; Bellows LE; Ritzert JT; Koo JT; Price PA; Caulfield AJ; Goldman WE
    mBio; 2014 Feb; 5(1):e01038-13. PubMed ID: 24520064
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The Yersinia pestis caf1M1A1 fimbrial capsule operon promotes transmission by flea bite in a mouse model of bubonic plague.
    Sebbane F; Jarrett C; Gardner D; Long D; Hinnebusch BJ
    Infect Immun; 2009 Mar; 77(3):1222-9. PubMed ID: 19103769
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Invasion of epithelial cells by Yersinia pestis: evidence for a Y. pestis-specific invasin.
    Cowan C; Jones HA; Kaya YH; Perry RD; Straley SC
    Infect Immun; 2000 Aug; 68(8):4523-30. PubMed ID: 10899851
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A plasminogen-activating protease specifically controls the development of primary pneumonic plague.
    Lathem WW; Price PA; Miller VL; Goldman WE
    Science; 2007 Jan; 315(5811):509-13. PubMed ID: 17255510
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Difference in Strain Pathogenicity of Septicemic Yersinia pestis Infection in a TLR2
    O'Donnell KL; Knopick PL; Larsen R; Sarkar S; Nilles ML; Bradley DS
    Infect Immun; 2020 Feb; 88(3):. PubMed ID: 31907194
    [No Abstract]   [Full Text] [Related]  

  • 53. Circumventing Y. pestis Virulence by Early Recruitment of Neutrophils to the Lungs during Pneumonic Plague.
    Vagima Y; Zauberman A; Levy Y; Gur D; Tidhar A; Aftalion M; Shafferman A; Mamroud E
    PLoS Pathog; 2015 May; 11(5):e1004893. PubMed ID: 25974210
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Acquisition of omptin reveals cryptic virulence function of autotransporter YapE in Yersinia pestis.
    Lawrenz MB; Pennington J; Miller VL
    Mol Microbiol; 2013 Jul; 89(2):276-87. PubMed ID: 23701256
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Depletion of Glucose Activates Catabolite Repression during Pneumonic Plague.
    Ritzert JT; Lathem WW
    J Bacteriol; 2018 Jun; 200(11):. PubMed ID: 29555700
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Yersinia pestis kills Caenorhabditis elegans by a biofilm-independent process that involves novel virulence factors.
    Styer KL; Hopkins GW; Bartra SS; Plano GV; Frothingham R; Aballay A
    EMBO Rep; 2005 Oct; 6(10):992-7. PubMed ID: 16170309
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The weak interaction of LcrV and TLR2 does not contribute to the virulence of Yersinia pestis.
    Reithmeier-Rost D; Hill J; Elvin SJ; Williamson D; Dittmann S; Schmid A; Wilharm G; Sing A
    Microbes Infect; 2007 Jul; 9(8):997-1002. PubMed ID: 17556003
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Pathology and Pathogenesis of Yersinia pestis.
    Du Z; Wang X
    Adv Exp Med Biol; 2016; 918():193-222. PubMed ID: 27722864
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Induction of Type I Interferon through a Noncanonical Toll-Like Receptor 7 Pathway during Yersinia pestis Infection.
    Dhariwala MO; Olson RM; Anderson DM
    Infect Immun; 2017 Nov; 85(11):. PubMed ID: 28847850
    [No Abstract]   [Full Text] [Related]  

  • 60. The yersiniabactin transport system is critical for the pathogenesis of bubonic and pneumonic plague.
    Fetherston JD; Kirillina O; Bobrov AG; Paulley JT; Perry RD
    Infect Immun; 2010 May; 78(5):2045-52. PubMed ID: 20160020
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.