BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 18025107)

  • 1. SLIP1, a factor required for activation of histone mRNA translation by the stem-loop binding protein.
    Cakmakci NG; Lerner RS; Wagner EJ; Zheng L; Marzluff WF
    Mol Cell Biol; 2008 Feb; 28(3):1182-94. PubMed ID: 18025107
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Potential New Mechanism of Arsenic Carcinogenesis: Depletion of Stem-Loop Binding Protein and Increase in Polyadenylated Canonical Histone H3.1 mRNA.
    Brocato J; Chen D; Liu J; Fang L; Jin C; Costa M
    Biol Trace Elem Res; 2015 Jul; 166(1):72-81. PubMed ID: 25893362
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The prolyl isomerase Pin1 targets stem-loop binding protein (SLBP) to dissociate the SLBP-histone mRNA complex linking histone mRNA decay with SLBP ubiquitination.
    Krishnan N; Lam TT; Fritz A; Rempinski D; O'Loughlin K; Minderman H; Berezney R; Marzluff WF; Thapar R
    Mol Cell Biol; 2012 Nov; 32(21):4306-22. PubMed ID: 22907757
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two Xenopus proteins that bind the 3' end of histone mRNA: implications for translational control of histone synthesis during oogenesis.
    Wang ZF; Ingledue TC; Dominski Z; Sanchez R; Marzluff WF
    Mol Cell Biol; 1999 Jan; 19(1):835-45. PubMed ID: 9858606
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The mRNP remodeling mediated by UPF1 promotes rapid degradation of replication-dependent histone mRNA.
    Choe J; Ahn SH; Kim YK
    Nucleic Acids Res; 2014 Aug; 42(14):9334-49. PubMed ID: 25016523
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combined top-down and bottom-up proteomics identifies a phosphorylation site in stem-loop-binding proteins that contributes to high-affinity RNA binding.
    Borchers CH; Thapar R; Petrotchenko EV; Torres MP; Speir JP; Easterling M; Dominski Z; Marzluff WF
    Proc Natl Acad Sci U S A; 2006 Feb; 103(9):3094-9. PubMed ID: 16492733
    [TBL] [Abstract][Full Text] [Related]  

  • 7. IL-1-induced post-transcriptional mechanisms target overlapping translational silencing and destabilizing elements in IκBζ mRNA.
    Dhamija S; Doerrie A; Winzen R; Dittrich-Breiholz O; Taghipour A; Kuehne N; Kracht M; Holtmann H
    J Biol Chem; 2010 Sep; 285(38):29165-78. PubMed ID: 20634286
    [TBL] [Abstract][Full Text] [Related]  

  • 8. INT6 interacts with MIF4GD/SLIP1 and is necessary for efficient histone mRNA translation.
    Neusiedler J; Mocquet V; Limousin T; Ohlmann T; Morris C; Jalinot P
    RNA; 2012 Jun; 18(6):1163-77. PubMed ID: 22532700
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human histone pre-mRNA assembles histone or canonical mRNA-processing complexes by overlapping 3'-end sequence elements.
    Ielasi FS; Ternifi S; Fontaine E; Iuso D; Couté Y; Palencia A
    Nucleic Acids Res; 2022 Nov; 50(21):12425-12443. PubMed ID: 36447390
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The metaphorical swiss army knife: The multitude and diverse roles of HEAT domains in eukaryotic translation initiation.
    Friedrich D; Marintchev A; Arthanari H
    Nucleic Acids Res; 2022 Jun; 50(10):5424-5442. PubMed ID: 35552740
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human cytomegalovirus lytic infection inhibits replication-dependent histone synthesis and requires stem loop binding protein function.
    Albright ER; Morrison K; Ranganathan P; Carter DM; Nishikiori M; Lee JH; Slayton MD; Ahlquist P; Terhune SS; Kalejta RF
    Proc Natl Acad Sci U S A; 2022 Apr; 119(14):e2122174119. PubMed ID: 35344424
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Localization and Functional Roles of Components of the Translation Apparatus in the Eukaryotic Cell Nucleus.
    Kachaev ZM; Ivashchenko SD; Kozlov EN; Lebedeva LA; Shidlovskii YV
    Cells; 2021 Nov; 10(11):. PubMed ID: 34831461
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Roles of mRNA poly(A) tails in regulation of eukaryotic gene expression.
    Passmore LA; Coller J
    Nat Rev Mol Cell Biol; 2022 Feb; 23(2):93-106. PubMed ID: 34594027
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stem-loop binding protein and metal carcinogenesis.
    Bradford BR; Jin C
    Semin Cancer Biol; 2021 Nov; 76():38-44. PubMed ID: 34416372
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The dark side of histones: genomic organization and role of oncohistones in cancer.
    Amatori S; Tavolaro S; Gambardella S; Fanelli M
    Clin Epigenetics; 2021 Apr; 13(1):71. PubMed ID: 33827674
    [TBL] [Abstract][Full Text] [Related]  

  • 16. eIF3 interacts with histone H4 messenger RNA to regulate its translation.
    Hayek H; Gross L; Janvier A; Schaeffer L; Martin F; Eriani G; Allmang C
    J Biol Chem; 2021; 296():100578. PubMed ID: 33766559
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Making ends meet: New functions of mRNA secondary structure.
    Ermolenko DN; Mathews DH
    Wiley Interdiscip Rev RNA; 2021 Mar; 12(2):e1611. PubMed ID: 32597020
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trypanosoma brucei EIF4E2 cap-binding protein binds a homolog of the histone-mRNA stem-loop-binding protein.
    Freire ER; Moura DMN; Bezerra MJR; Xavier CC; Morais-Sobral MC; Vashisht AA; Rezende AM; Wohlschlegel JA; Sturm NR; de Melo Neto OP; Campbell DA
    Curr Genet; 2018 Aug; 64(4):821-839. PubMed ID: 29288414
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of DNA replication-coupled histone gene expression.
    Mei Q; Huang J; Chen W; Tang J; Xu C; Yu Q; Cheng Y; Ma L; Yu X; Li S
    Oncotarget; 2017 Nov; 8(55):95005-95022. PubMed ID: 29212286
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.